Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
djhval2
Next ⟩
djhcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
djhval2
Description:
Value of subspace join for
DVecH
vector space.
(Contributed by
NM
, 6-Aug-2014)
Ref
Expression
Hypotheses
djhval.h
⊢
H
=
LHyp
⁡
K
djhval.u
⊢
U
=
DVecH
⁡
K
⁡
W
djhval.v
⊢
V
=
Base
U
djhval.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
djhval.j
⊢
∨
˙
=
joinH
⁡
K
⁡
W
Assertion
djhval2
⊢
K
∈
HL
∧
W
∈
H
∧
X
⊆
V
∧
Y
⊆
V
→
X
∨
˙
Y
=
⊥
˙
⁡
⊥
˙
⁡
X
∪
Y
Proof
Step
Hyp
Ref
Expression
1
djhval.h
⊢
H
=
LHyp
⁡
K
2
djhval.u
⊢
U
=
DVecH
⁡
K
⁡
W
3
djhval.v
⊢
V
=
Base
U
4
djhval.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
5
djhval.j
⊢
∨
˙
=
joinH
⁡
K
⁡
W
6
1
2
3
4
5
djhval
⊢
K
∈
HL
∧
W
∈
H
∧
X
⊆
V
∧
Y
⊆
V
→
X
∨
˙
Y
=
⊥
˙
⁡
⊥
˙
⁡
X
∩
⊥
˙
⁡
Y
7
6
3impb
⊢
K
∈
HL
∧
W
∈
H
∧
X
⊆
V
∧
Y
⊆
V
→
X
∨
˙
Y
=
⊥
˙
⁡
⊥
˙
⁡
X
∩
⊥
˙
⁡
Y
8
1
2
3
4
dochdmj1
⊢
K
∈
HL
∧
W
∈
H
∧
X
⊆
V
∧
Y
⊆
V
→
⊥
˙
⁡
X
∪
Y
=
⊥
˙
⁡
X
∩
⊥
˙
⁡
Y
9
8
fveq2d
⊢
K
∈
HL
∧
W
∈
H
∧
X
⊆
V
∧
Y
⊆
V
→
⊥
˙
⁡
⊥
˙
⁡
X
∪
Y
=
⊥
˙
⁡
⊥
˙
⁡
X
∩
⊥
˙
⁡
Y
10
7
9
eqtr4d
⊢
K
∈
HL
∧
W
∈
H
∧
X
⊆
V
∧
Y
⊆
V
→
X
∨
˙
Y
=
⊥
˙
⁡
⊥
˙
⁡
X
∪
Y