| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochsp.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochsp.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochsp.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochsp.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
dochsp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 6 |
|
dochsp.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 7 |
|
dochsp.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
| 8 |
1 2 6
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 9 |
4 5
|
lspssv |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) ⊆ 𝑉 ) |
| 10 |
8 7 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ⊆ 𝑉 ) |
| 11 |
4 5
|
lspssid |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ⊆ 𝑉 ) → 𝑋 ⊆ ( 𝑁 ‘ 𝑋 ) ) |
| 12 |
8 7 11
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ⊆ ( 𝑁 ‘ 𝑋 ) ) |
| 13 |
1 2 4 3
|
dochss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ 𝑋 ) ⊆ 𝑉 ∧ 𝑋 ⊆ ( 𝑁 ‘ 𝑋 ) ) → ( ⊥ ‘ ( 𝑁 ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ 𝑋 ) ) |
| 14 |
6 10 12 13
|
syl3anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ 𝑋 ) ) |
| 15 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 16 |
1 15 2 4 3
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 17 |
6 7 16
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 18 |
1 15 3
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ⊥ ‘ 𝑋 ) ) |
| 19 |
6 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ⊥ ‘ 𝑋 ) ) |
| 20 |
1 2 4 3
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
| 21 |
6 7 20
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
| 22 |
1 2 4 3
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ) |
| 23 |
6 21 22
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ) |
| 24 |
1 2 3 4 5 6 7
|
dochspss |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 25 |
1 2 4 3
|
dochss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝑋 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ⊆ ( ⊥ ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 26 |
6 23 24 25
|
syl3anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ⊆ ( ⊥ ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 27 |
19 26
|
eqsstrrd |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ⊆ ( ⊥ ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 28 |
14 27
|
eqssd |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ 𝑋 ) ) = ( ⊥ ‘ 𝑋 ) ) |