Metamath Proof Explorer


Theorem dochocsp

Description: The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014)

Ref Expression
Hypotheses dochsp.h H = LHyp K
dochsp.u U = DVecH K W
dochsp.o ˙ = ocH K W
dochsp.v V = Base U
dochsp.n N = LSpan U
dochsp.k φ K HL W H
dochsp.x φ X V
Assertion dochocsp φ ˙ N X = ˙ X

Proof

Step Hyp Ref Expression
1 dochsp.h H = LHyp K
2 dochsp.u U = DVecH K W
3 dochsp.o ˙ = ocH K W
4 dochsp.v V = Base U
5 dochsp.n N = LSpan U
6 dochsp.k φ K HL W H
7 dochsp.x φ X V
8 1 2 6 dvhlmod φ U LMod
9 4 5 lspssv U LMod X V N X V
10 8 7 9 syl2anc φ N X V
11 4 5 lspssid U LMod X V X N X
12 8 7 11 syl2anc φ X N X
13 1 2 4 3 dochss K HL W H N X V X N X ˙ N X ˙ X
14 6 10 12 13 syl3anc φ ˙ N X ˙ X
15 eqid DIsoH K W = DIsoH K W
16 1 15 2 4 3 dochcl K HL W H X V ˙ X ran DIsoH K W
17 6 7 16 syl2anc φ ˙ X ran DIsoH K W
18 1 15 3 dochoc K HL W H ˙ X ran DIsoH K W ˙ ˙ ˙ X = ˙ X
19 6 17 18 syl2anc φ ˙ ˙ ˙ X = ˙ X
20 1 2 4 3 dochssv K HL W H X V ˙ X V
21 6 7 20 syl2anc φ ˙ X V
22 1 2 4 3 dochssv K HL W H ˙ X V ˙ ˙ X V
23 6 21 22 syl2anc φ ˙ ˙ X V
24 1 2 3 4 5 6 7 dochspss φ N X ˙ ˙ X
25 1 2 4 3 dochss K HL W H ˙ ˙ X V N X ˙ ˙ X ˙ ˙ ˙ X ˙ N X
26 6 23 24 25 syl3anc φ ˙ ˙ ˙ X ˙ N X
27 19 26 eqsstrrd φ ˙ X ˙ N X
28 14 27 eqssd φ ˙ N X = ˙ X