Step |
Hyp |
Ref |
Expression |
1 |
|
dochsp.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochsp.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochsp.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochsp.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochsp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
dochsp.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
dochsp.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
8 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
10 |
1 2 8 9
|
dihsslss |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ⊆ ( LSubSp ‘ 𝑈 ) ) |
11 |
|
rabss2 |
⊢ ( ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ⊆ ( LSubSp ‘ 𝑈 ) → { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ⊆ { 𝑧 ∈ ( LSubSp ‘ 𝑈 ) ∣ 𝑋 ⊆ 𝑧 } ) |
12 |
|
intss |
⊢ ( { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ⊆ { 𝑧 ∈ ( LSubSp ‘ 𝑈 ) ∣ 𝑋 ⊆ 𝑧 } → ∩ { 𝑧 ∈ ( LSubSp ‘ 𝑈 ) ∣ 𝑋 ⊆ 𝑧 } ⊆ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) |
13 |
6 10 11 12
|
4syl |
⊢ ( 𝜑 → ∩ { 𝑧 ∈ ( LSubSp ‘ 𝑈 ) ∣ 𝑋 ⊆ 𝑧 } ⊆ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) |
14 |
1 2 6
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
15 |
4 9 5
|
lspval |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) = ∩ { 𝑧 ∈ ( LSubSp ‘ 𝑈 ) ∣ 𝑋 ⊆ 𝑧 } ) |
16 |
14 7 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) = ∩ { 𝑧 ∈ ( LSubSp ‘ 𝑈 ) ∣ 𝑋 ⊆ 𝑧 } ) |
17 |
1 8 2 4 3 6 7
|
doch2val2 |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) |
18 |
13 16 17
|
3sstr4d |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |