Metamath Proof Explorer


Theorem dochspss

Description: The span of a set of vectors is included in their double orthocomplement. (Contributed by NM, 26-Jul-2014)

Ref Expression
Hypotheses dochsp.h 𝐻 = ( LHyp ‘ 𝐾 )
dochsp.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochsp.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochsp.v 𝑉 = ( Base ‘ 𝑈 )
dochsp.n 𝑁 = ( LSpan ‘ 𝑈 )
dochsp.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochsp.x ( 𝜑𝑋𝑉 )
Assertion dochspss ( 𝜑 → ( 𝑁𝑋 ) ⊆ ( ‘ ( 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 dochsp.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochsp.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 dochsp.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
4 dochsp.v 𝑉 = ( Base ‘ 𝑈 )
5 dochsp.n 𝑁 = ( LSpan ‘ 𝑈 )
6 dochsp.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 dochsp.x ( 𝜑𝑋𝑉 )
8 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
9 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
10 1 2 8 9 dihsslss ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ⊆ ( LSubSp ‘ 𝑈 ) )
11 rabss2 ( ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ⊆ ( LSubSp ‘ 𝑈 ) → { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋𝑧 } ⊆ { 𝑧 ∈ ( LSubSp ‘ 𝑈 ) ∣ 𝑋𝑧 } )
12 intss ( { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋𝑧 } ⊆ { 𝑧 ∈ ( LSubSp ‘ 𝑈 ) ∣ 𝑋𝑧 } → { 𝑧 ∈ ( LSubSp ‘ 𝑈 ) ∣ 𝑋𝑧 } ⊆ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋𝑧 } )
13 6 10 11 12 4syl ( 𝜑 { 𝑧 ∈ ( LSubSp ‘ 𝑈 ) ∣ 𝑋𝑧 } ⊆ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋𝑧 } )
14 1 2 6 dvhlmod ( 𝜑𝑈 ∈ LMod )
15 4 9 5 lspval ( ( 𝑈 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑁𝑋 ) = { 𝑧 ∈ ( LSubSp ‘ 𝑈 ) ∣ 𝑋𝑧 } )
16 14 7 15 syl2anc ( 𝜑 → ( 𝑁𝑋 ) = { 𝑧 ∈ ( LSubSp ‘ 𝑈 ) ∣ 𝑋𝑧 } )
17 1 8 2 4 3 6 7 doch2val2 ( 𝜑 → ( ‘ ( 𝑋 ) ) = { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋𝑧 } )
18 13 16 17 3sstr4d ( 𝜑 → ( 𝑁𝑋 ) ⊆ ( ‘ ( 𝑋 ) ) )