| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochsp.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dochsp.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
dochsp.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 4 |
|
dochsp.v |
|- V = ( Base ` U ) |
| 5 |
|
dochsp.n |
|- N = ( LSpan ` U ) |
| 6 |
|
dochsp.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 7 |
|
dochsp.x |
|- ( ph -> X C_ V ) |
| 8 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
| 9 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 10 |
1 2 8 9
|
dihsslss |
|- ( ( K e. HL /\ W e. H ) -> ran ( ( DIsoH ` K ) ` W ) C_ ( LSubSp ` U ) ) |
| 11 |
|
rabss2 |
|- ( ran ( ( DIsoH ` K ) ` W ) C_ ( LSubSp ` U ) -> { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } C_ { z e. ( LSubSp ` U ) | X C_ z } ) |
| 12 |
|
intss |
|- ( { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } C_ { z e. ( LSubSp ` U ) | X C_ z } -> |^| { z e. ( LSubSp ` U ) | X C_ z } C_ |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) |
| 13 |
6 10 11 12
|
4syl |
|- ( ph -> |^| { z e. ( LSubSp ` U ) | X C_ z } C_ |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) |
| 14 |
1 2 6
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 15 |
4 9 5
|
lspval |
|- ( ( U e. LMod /\ X C_ V ) -> ( N ` X ) = |^| { z e. ( LSubSp ` U ) | X C_ z } ) |
| 16 |
14 7 15
|
syl2anc |
|- ( ph -> ( N ` X ) = |^| { z e. ( LSubSp ` U ) | X C_ z } ) |
| 17 |
1 8 2 4 3 6 7
|
doch2val2 |
|- ( ph -> ( ._|_ ` ( ._|_ ` X ) ) = |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) |
| 18 |
13 16 17
|
3sstr4d |
|- ( ph -> ( N ` X ) C_ ( ._|_ ` ( ._|_ ` X ) ) ) |