Step |
Hyp |
Ref |
Expression |
1 |
|
dochsp.h |
|- H = ( LHyp ` K ) |
2 |
|
dochsp.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
dochsp.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
4 |
|
dochsp.v |
|- V = ( Base ` U ) |
5 |
|
dochsp.n |
|- N = ( LSpan ` U ) |
6 |
|
dochsp.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
dochsp.x |
|- ( ph -> X C_ V ) |
8 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
9 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
10 |
1 2 8 9
|
dihsslss |
|- ( ( K e. HL /\ W e. H ) -> ran ( ( DIsoH ` K ) ` W ) C_ ( LSubSp ` U ) ) |
11 |
|
rabss2 |
|- ( ran ( ( DIsoH ` K ) ` W ) C_ ( LSubSp ` U ) -> { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } C_ { z e. ( LSubSp ` U ) | X C_ z } ) |
12 |
|
intss |
|- ( { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } C_ { z e. ( LSubSp ` U ) | X C_ z } -> |^| { z e. ( LSubSp ` U ) | X C_ z } C_ |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) |
13 |
6 10 11 12
|
4syl |
|- ( ph -> |^| { z e. ( LSubSp ` U ) | X C_ z } C_ |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) |
14 |
1 2 6
|
dvhlmod |
|- ( ph -> U e. LMod ) |
15 |
4 9 5
|
lspval |
|- ( ( U e. LMod /\ X C_ V ) -> ( N ` X ) = |^| { z e. ( LSubSp ` U ) | X C_ z } ) |
16 |
14 7 15
|
syl2anc |
|- ( ph -> ( N ` X ) = |^| { z e. ( LSubSp ` U ) | X C_ z } ) |
17 |
1 8 2 4 3 6 7
|
doch2val2 |
|- ( ph -> ( ._|_ ` ( ._|_ ` X ) ) = |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) |
18 |
13 16 17
|
3sstr4d |
|- ( ph -> ( N ` X ) C_ ( ._|_ ` ( ._|_ ` X ) ) ) |