| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihjat1.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dihjat1.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
dihjat1.v |
|- V = ( Base ` U ) |
| 4 |
|
dihjat1.p |
|- .(+) = ( LSSum ` U ) |
| 5 |
|
dihjat1.n |
|- N = ( LSpan ` U ) |
| 6 |
|
dihjat1.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 7 |
|
dihjat1.j |
|- .\/ = ( ( joinH ` K ) ` W ) |
| 8 |
|
dihjat1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
dihjat1.x |
|- ( ph -> X e. ran I ) |
| 10 |
|
dihjat1.o |
|- .0. = ( 0g ` U ) |
| 11 |
|
dihjat1lem.q |
|- ( ph -> T e. ( V \ { .0. } ) ) |
| 12 |
|
simpr |
|- ( ( ph /\ X = { .0. } ) -> X = { .0. } ) |
| 13 |
12
|
oveq1d |
|- ( ( ph /\ X = { .0. } ) -> ( X .\/ ( N ` { T } ) ) = ( { .0. } .\/ ( N ` { T } ) ) ) |
| 14 |
12
|
oveq1d |
|- ( ( ph /\ X = { .0. } ) -> ( X .(+) ( N ` { T } ) ) = ( { .0. } .(+) ( N ` { T } ) ) ) |
| 15 |
|
eldifi |
|- ( T e. ( V \ { .0. } ) -> T e. V ) |
| 16 |
11 15
|
syl |
|- ( ph -> T e. V ) |
| 17 |
1 2 3 5 6
|
dihlsprn |
|- ( ( ( K e. HL /\ W e. H ) /\ T e. V ) -> ( N ` { T } ) e. ran I ) |
| 18 |
8 16 17
|
syl2anc |
|- ( ph -> ( N ` { T } ) e. ran I ) |
| 19 |
1 2 10 6 7 8 18
|
djh02 |
|- ( ph -> ( { .0. } .\/ ( N ` { T } ) ) = ( N ` { T } ) ) |
| 20 |
1 2 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 21 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 22 |
3 21 5
|
lspsncl |
|- ( ( U e. LMod /\ T e. V ) -> ( N ` { T } ) e. ( LSubSp ` U ) ) |
| 23 |
20 16 22
|
syl2anc |
|- ( ph -> ( N ` { T } ) e. ( LSubSp ` U ) ) |
| 24 |
21
|
lsssubg |
|- ( ( U e. LMod /\ ( N ` { T } ) e. ( LSubSp ` U ) ) -> ( N ` { T } ) e. ( SubGrp ` U ) ) |
| 25 |
20 23 24
|
syl2anc |
|- ( ph -> ( N ` { T } ) e. ( SubGrp ` U ) ) |
| 26 |
10 4
|
lsm02 |
|- ( ( N ` { T } ) e. ( SubGrp ` U ) -> ( { .0. } .(+) ( N ` { T } ) ) = ( N ` { T } ) ) |
| 27 |
25 26
|
syl |
|- ( ph -> ( { .0. } .(+) ( N ` { T } ) ) = ( N ` { T } ) ) |
| 28 |
19 27
|
eqtr4d |
|- ( ph -> ( { .0. } .\/ ( N ` { T } ) ) = ( { .0. } .(+) ( N ` { T } ) ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ X = { .0. } ) -> ( { .0. } .\/ ( N ` { T } ) ) = ( { .0. } .(+) ( N ` { T } ) ) ) |
| 30 |
14 29
|
eqtr4d |
|- ( ( ph /\ X = { .0. } ) -> ( X .(+) ( N ` { T } ) ) = ( { .0. } .\/ ( N ` { T } ) ) ) |
| 31 |
13 30
|
eqtr4d |
|- ( ( ph /\ X = { .0. } ) -> ( X .\/ ( N ` { T } ) ) = ( X .(+) ( N ` { T } ) ) ) |
| 32 |
20
|
adantr |
|- ( ( ph /\ X =/= { .0. } ) -> U e. LMod ) |
| 33 |
1 2 6 3
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X C_ V ) |
| 34 |
8 9 33
|
syl2anc |
|- ( ph -> X C_ V ) |
| 35 |
3 21
|
lssss |
|- ( ( N ` { T } ) e. ( LSubSp ` U ) -> ( N ` { T } ) C_ V ) |
| 36 |
23 35
|
syl |
|- ( ph -> ( N ` { T } ) C_ V ) |
| 37 |
1 6 2 3 7
|
djhcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X C_ V /\ ( N ` { T } ) C_ V ) ) -> ( X .\/ ( N ` { T } ) ) e. ran I ) |
| 38 |
8 34 36 37
|
syl12anc |
|- ( ph -> ( X .\/ ( N ` { T } ) ) e. ran I ) |
| 39 |
1 2 6 3
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X .\/ ( N ` { T } ) ) e. ran I ) -> ( X .\/ ( N ` { T } ) ) C_ V ) |
| 40 |
8 38 39
|
syl2anc |
|- ( ph -> ( X .\/ ( N ` { T } ) ) C_ V ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ X =/= { .0. } ) -> ( X .\/ ( N ` { T } ) ) C_ V ) |
| 42 |
1 2 6 21
|
dihrnlss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X e. ( LSubSp ` U ) ) |
| 43 |
8 9 42
|
syl2anc |
|- ( ph -> X e. ( LSubSp ` U ) ) |
| 44 |
21 4
|
lsmcl |
|- ( ( U e. LMod /\ X e. ( LSubSp ` U ) /\ ( N ` { T } ) e. ( LSubSp ` U ) ) -> ( X .(+) ( N ` { T } ) ) e. ( LSubSp ` U ) ) |
| 45 |
20 43 23 44
|
syl3anc |
|- ( ph -> ( X .(+) ( N ` { T } ) ) e. ( LSubSp ` U ) ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ X =/= { .0. } ) -> ( X .(+) ( N ` { T } ) ) e. ( LSubSp ` U ) ) |
| 47 |
|
simplr |
|- ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) -> X =/= { .0. } ) |
| 48 |
8
|
ad2antrr |
|- ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) -> ( K e. HL /\ W e. H ) ) |
| 49 |
9
|
ad2antrr |
|- ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) -> X e. ran I ) |
| 50 |
|
simpr |
|- ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) -> x e. ( V \ { .0. } ) ) |
| 51 |
11
|
ad2antrr |
|- ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) -> T e. ( V \ { .0. } ) ) |
| 52 |
1 2 3 10 5 6 7 48 49 50 51
|
djhcvat42 |
|- ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) -> ( ( X =/= { .0. } /\ ( N ` { x } ) C_ ( X .\/ ( N ` { T } ) ) ) -> E. y e. ( V \ { .0. } ) ( ( N ` { y } ) C_ X /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) ) ) |
| 53 |
47 52
|
mpand |
|- ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) -> ( ( N ` { x } ) C_ ( X .\/ ( N ` { T } ) ) -> E. y e. ( V \ { .0. } ) ( ( N ` { y } ) C_ X /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) ) ) |
| 54 |
|
simprrl |
|- ( ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) /\ ( y e. ( V \ { .0. } ) /\ ( ( N ` { y } ) C_ X /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) ) ) -> ( N ` { y } ) C_ X ) |
| 55 |
20
|
ad3antrrr |
|- ( ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) /\ ( y e. ( V \ { .0. } ) /\ ( ( N ` { y } ) C_ X /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) ) ) -> U e. LMod ) |
| 56 |
43
|
ad3antrrr |
|- ( ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) /\ ( y e. ( V \ { .0. } ) /\ ( ( N ` { y } ) C_ X /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) ) ) -> X e. ( LSubSp ` U ) ) |
| 57 |
|
eldifi |
|- ( y e. ( V \ { .0. } ) -> y e. V ) |
| 58 |
57
|
ad2antrl |
|- ( ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) /\ ( y e. ( V \ { .0. } ) /\ ( ( N ` { y } ) C_ X /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) ) ) -> y e. V ) |
| 59 |
3 21 5 55 56 58
|
ellspsn5b |
|- ( ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) /\ ( y e. ( V \ { .0. } ) /\ ( ( N ` { y } ) C_ X /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) ) ) -> ( y e. X <-> ( N ` { y } ) C_ X ) ) |
| 60 |
54 59
|
mpbird |
|- ( ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) /\ ( y e. ( V \ { .0. } ) /\ ( ( N ` { y } ) C_ X /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) ) ) -> y e. X ) |
| 61 |
16
|
ad3antrrr |
|- ( ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) /\ ( y e. ( V \ { .0. } ) /\ ( ( N ` { y } ) C_ X /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) ) ) -> T e. V ) |
| 62 |
3 5
|
lspsnid |
|- ( ( U e. LMod /\ T e. V ) -> T e. ( N ` { T } ) ) |
| 63 |
55 61 62
|
syl2anc |
|- ( ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) /\ ( y e. ( V \ { .0. } ) /\ ( ( N ` { y } ) C_ X /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) ) ) -> T e. ( N ` { T } ) ) |
| 64 |
|
simprrr |
|- ( ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) /\ ( y e. ( V \ { .0. } ) /\ ( ( N ` { y } ) C_ X /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) ) ) -> ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) |
| 65 |
|
sneq |
|- ( z = T -> { z } = { T } ) |
| 66 |
65
|
fveq2d |
|- ( z = T -> ( N ` { z } ) = ( N ` { T } ) ) |
| 67 |
66
|
oveq2d |
|- ( z = T -> ( ( N ` { y } ) .\/ ( N ` { z } ) ) = ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) |
| 68 |
67
|
sseq2d |
|- ( z = T -> ( ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { z } ) ) <-> ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) ) |
| 69 |
68
|
rspcev |
|- ( ( T e. ( N ` { T } ) /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) -> E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { z } ) ) ) |
| 70 |
63 64 69
|
syl2anc |
|- ( ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) /\ ( y e. ( V \ { .0. } ) /\ ( ( N ` { y } ) C_ X /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) ) ) -> E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { z } ) ) ) |
| 71 |
60 70
|
jca |
|- ( ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) /\ ( y e. ( V \ { .0. } ) /\ ( ( N ` { y } ) C_ X /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) ) ) -> ( y e. X /\ E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { z } ) ) ) ) |
| 72 |
71
|
ex |
|- ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) -> ( ( y e. ( V \ { .0. } ) /\ ( ( N ` { y } ) C_ X /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) ) -> ( y e. X /\ E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { z } ) ) ) ) ) |
| 73 |
72
|
reximdv2 |
|- ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) -> ( E. y e. ( V \ { .0. } ) ( ( N ` { y } ) C_ X /\ ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { T } ) ) ) -> E. y e. X E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { z } ) ) ) ) |
| 74 |
53 73
|
syld |
|- ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) -> ( ( N ` { x } ) C_ ( X .\/ ( N ` { T } ) ) -> E. y e. X E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { z } ) ) ) ) |
| 75 |
74
|
anim2d |
|- ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) -> ( ( x e. V /\ ( N ` { x } ) C_ ( X .\/ ( N ` { T } ) ) ) -> ( x e. V /\ E. y e. X E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { z } ) ) ) ) ) |
| 76 |
1 2 6 21
|
dihrnlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X .\/ ( N ` { T } ) ) e. ran I ) -> ( X .\/ ( N ` { T } ) ) e. ( LSubSp ` U ) ) |
| 77 |
8 38 76
|
syl2anc |
|- ( ph -> ( X .\/ ( N ` { T } ) ) e. ( LSubSp ` U ) ) |
| 78 |
3 21 5 20 77
|
ellspsn6 |
|- ( ph -> ( x e. ( X .\/ ( N ` { T } ) ) <-> ( x e. V /\ ( N ` { x } ) C_ ( X .\/ ( N ` { T } ) ) ) ) ) |
| 79 |
78
|
ad2antrr |
|- ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) -> ( x e. ( X .\/ ( N ` { T } ) ) <-> ( x e. V /\ ( N ` { x } ) C_ ( X .\/ ( N ` { T } ) ) ) ) ) |
| 80 |
3 21 4 5 20 43 23
|
lsmelval2 |
|- ( ph -> ( x e. ( X .(+) ( N ` { T } ) ) <-> ( x e. V /\ E. y e. X E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .(+) ( N ` { z } ) ) ) ) ) |
| 81 |
8
|
ad2antrr |
|- ( ( ( ph /\ y e. X ) /\ z e. ( N ` { T } ) ) -> ( K e. HL /\ W e. H ) ) |
| 82 |
43
|
ad2antrr |
|- ( ( ( ph /\ y e. X ) /\ z e. ( N ` { T } ) ) -> X e. ( LSubSp ` U ) ) |
| 83 |
|
simplr |
|- ( ( ( ph /\ y e. X ) /\ z e. ( N ` { T } ) ) -> y e. X ) |
| 84 |
3 21
|
lssel |
|- ( ( X e. ( LSubSp ` U ) /\ y e. X ) -> y e. V ) |
| 85 |
82 83 84
|
syl2anc |
|- ( ( ( ph /\ y e. X ) /\ z e. ( N ` { T } ) ) -> y e. V ) |
| 86 |
23
|
ad2antrr |
|- ( ( ( ph /\ y e. X ) /\ z e. ( N ` { T } ) ) -> ( N ` { T } ) e. ( LSubSp ` U ) ) |
| 87 |
|
simpr |
|- ( ( ( ph /\ y e. X ) /\ z e. ( N ` { T } ) ) -> z e. ( N ` { T } ) ) |
| 88 |
3 21
|
lssel |
|- ( ( ( N ` { T } ) e. ( LSubSp ` U ) /\ z e. ( N ` { T } ) ) -> z e. V ) |
| 89 |
86 87 88
|
syl2anc |
|- ( ( ( ph /\ y e. X ) /\ z e. ( N ` { T } ) ) -> z e. V ) |
| 90 |
1 2 3 4 5 6 7 81 85 89
|
djhlsmat |
|- ( ( ( ph /\ y e. X ) /\ z e. ( N ` { T } ) ) -> ( ( N ` { y } ) .(+) ( N ` { z } ) ) = ( ( N ` { y } ) .\/ ( N ` { z } ) ) ) |
| 91 |
90
|
sseq2d |
|- ( ( ( ph /\ y e. X ) /\ z e. ( N ` { T } ) ) -> ( ( N ` { x } ) C_ ( ( N ` { y } ) .(+) ( N ` { z } ) ) <-> ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { z } ) ) ) ) |
| 92 |
91
|
rexbidva |
|- ( ( ph /\ y e. X ) -> ( E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .(+) ( N ` { z } ) ) <-> E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { z } ) ) ) ) |
| 93 |
92
|
rexbidva |
|- ( ph -> ( E. y e. X E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .(+) ( N ` { z } ) ) <-> E. y e. X E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { z } ) ) ) ) |
| 94 |
93
|
anbi2d |
|- ( ph -> ( ( x e. V /\ E. y e. X E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .(+) ( N ` { z } ) ) ) <-> ( x e. V /\ E. y e. X E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { z } ) ) ) ) ) |
| 95 |
80 94
|
bitrd |
|- ( ph -> ( x e. ( X .(+) ( N ` { T } ) ) <-> ( x e. V /\ E. y e. X E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { z } ) ) ) ) ) |
| 96 |
95
|
ad2antrr |
|- ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) -> ( x e. ( X .(+) ( N ` { T } ) ) <-> ( x e. V /\ E. y e. X E. z e. ( N ` { T } ) ( N ` { x } ) C_ ( ( N ` { y } ) .\/ ( N ` { z } ) ) ) ) ) |
| 97 |
75 79 96
|
3imtr4d |
|- ( ( ( ph /\ X =/= { .0. } ) /\ x e. ( V \ { .0. } ) ) -> ( x e. ( X .\/ ( N ` { T } ) ) -> x e. ( X .(+) ( N ` { T } ) ) ) ) |
| 98 |
10 21 32 41 46 97
|
lssssr |
|- ( ( ph /\ X =/= { .0. } ) -> ( X .\/ ( N ` { T } ) ) C_ ( X .(+) ( N ` { T } ) ) ) |
| 99 |
1 2 3 4 7 8 34 36
|
djhsumss |
|- ( ph -> ( X .(+) ( N ` { T } ) ) C_ ( X .\/ ( N ` { T } ) ) ) |
| 100 |
99
|
adantr |
|- ( ( ph /\ X =/= { .0. } ) -> ( X .(+) ( N ` { T } ) ) C_ ( X .\/ ( N ` { T } ) ) ) |
| 101 |
98 100
|
eqssd |
|- ( ( ph /\ X =/= { .0. } ) -> ( X .\/ ( N ` { T } ) ) = ( X .(+) ( N ` { T } ) ) ) |
| 102 |
31 101
|
pm2.61dane |
|- ( ph -> ( X .\/ ( N ` { T } ) ) = ( X .(+) ( N ` { T } ) ) ) |