| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djhlsmat.h |
|- H = ( LHyp ` K ) |
| 2 |
|
djhlsmat.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
djhlsmat.v |
|- V = ( Base ` U ) |
| 4 |
|
djhlsmat.p |
|- .(+) = ( LSSum ` U ) |
| 5 |
|
djhlsmat.n |
|- N = ( LSpan ` U ) |
| 6 |
|
djhlsmat.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 7 |
|
djhlsmat.j |
|- .\/ = ( ( joinH ` K ) ` W ) |
| 8 |
|
djhlsmat.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
djhlsmat.x |
|- ( ph -> X e. V ) |
| 10 |
|
djhlsmat.y |
|- ( ph -> Y e. V ) |
| 11 |
1 2 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 12 |
9
|
snssd |
|- ( ph -> { X } C_ V ) |
| 13 |
10
|
snssd |
|- ( ph -> { Y } C_ V ) |
| 14 |
3 5 4
|
lsmsp2 |
|- ( ( U e. LMod /\ { X } C_ V /\ { Y } C_ V ) -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) = ( N ` ( { X } u. { Y } ) ) ) |
| 15 |
11 12 13 14
|
syl3anc |
|- ( ph -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) = ( N ` ( { X } u. { Y } ) ) ) |
| 16 |
|
df-pr |
|- { X , Y } = ( { X } u. { Y } ) |
| 17 |
16
|
fveq2i |
|- ( N ` { X , Y } ) = ( N ` ( { X } u. { Y } ) ) |
| 18 |
15 17
|
eqtr4di |
|- ( ph -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) = ( N ` { X , Y } ) ) |
| 19 |
1 2 3 5 6 8 9 10
|
dihprrn |
|- ( ph -> ( N ` { X , Y } ) e. ran I ) |
| 20 |
18 19
|
eqeltrd |
|- ( ph -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) e. ran I ) |
| 21 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 22 |
3 21 5
|
lspsncl |
|- ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
| 23 |
11 9 22
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
| 24 |
3 21 5
|
lspsncl |
|- ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
| 25 |
11 10 24
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
| 26 |
1 2 3 21 4 6 7 8 23 25
|
djhlsmcl |
|- ( ph -> ( ( ( N ` { X } ) .(+) ( N ` { Y } ) ) e. ran I <-> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) = ( ( N ` { X } ) .\/ ( N ` { Y } ) ) ) ) |
| 27 |
20 26
|
mpbid |
|- ( ph -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) = ( ( N ` { X } ) .\/ ( N ` { Y } ) ) ) |