Step |
Hyp |
Ref |
Expression |
1 |
|
djhlsmat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
djhlsmat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
djhlsmat.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
djhlsmat.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
5 |
|
djhlsmat.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
djhlsmat.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
djhlsmat.j |
⊢ ∨ = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
djhlsmat.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
djhlsmat.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
djhlsmat.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
11 |
1 2 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
12 |
9
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
13 |
10
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
14 |
3 5 4
|
lsmsp2 |
⊢ ( ( 𝑈 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ∧ { 𝑌 } ⊆ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) |
15 |
11 12 13 14
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) |
16 |
|
df-pr |
⊢ { 𝑋 , 𝑌 } = ( { 𝑋 } ∪ { 𝑌 } ) |
17 |
16
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) |
18 |
15 17
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
19 |
1 2 3 5 6 8 9 10
|
dihprrn |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ran 𝐼 ) |
20 |
18 19
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ran 𝐼 ) |
21 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
22 |
3 21 5
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
23 |
11 9 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
24 |
3 21 5
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
25 |
11 10 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
26 |
1 2 3 21 4 6 7 8 23 25
|
djhlsmcl |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ran 𝐼 ↔ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
27 |
20 26
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ∨ ( 𝑁 ‘ { 𝑌 } ) ) ) |