Metamath Proof Explorer


Theorem djhlsmat

Description: The sum of two subspace atoms equals their join. TODO: seems convoluted to go via dihprrn ; should we directly use dihjat ? (Contributed by NM, 13-Aug-2014)

Ref Expression
Hypotheses djhlsmat.h H=LHypK
djhlsmat.u U=DVecHKW
djhlsmat.v V=BaseU
djhlsmat.p ˙=LSSumU
djhlsmat.n N=LSpanU
djhlsmat.i I=DIsoHKW
djhlsmat.j ˙=joinHKW
djhlsmat.k φKHLWH
djhlsmat.x φXV
djhlsmat.y φYV
Assertion djhlsmat φNX˙NY=NX˙NY

Proof

Step Hyp Ref Expression
1 djhlsmat.h H=LHypK
2 djhlsmat.u U=DVecHKW
3 djhlsmat.v V=BaseU
4 djhlsmat.p ˙=LSSumU
5 djhlsmat.n N=LSpanU
6 djhlsmat.i I=DIsoHKW
7 djhlsmat.j ˙=joinHKW
8 djhlsmat.k φKHLWH
9 djhlsmat.x φXV
10 djhlsmat.y φYV
11 1 2 8 dvhlmod φULMod
12 9 snssd φXV
13 10 snssd φYV
14 3 5 4 lsmsp2 ULModXVYVNX˙NY=NXY
15 11 12 13 14 syl3anc φNX˙NY=NXY
16 df-pr XY=XY
17 16 fveq2i NXY=NXY
18 15 17 eqtr4di φNX˙NY=NXY
19 1 2 3 5 6 8 9 10 dihprrn φNXYranI
20 18 19 eqeltrd φNX˙NYranI
21 eqid LSubSpU=LSubSpU
22 3 21 5 lspsncl ULModXVNXLSubSpU
23 11 9 22 syl2anc φNXLSubSpU
24 3 21 5 lspsncl ULModYVNYLSubSpU
25 11 10 24 syl2anc φNYLSubSpU
26 1 2 3 21 4 6 7 8 23 25 djhlsmcl φNX˙NYranINX˙NY=NX˙NY
27 20 26 mpbid φNX˙NY=NX˙NY