Step |
Hyp |
Ref |
Expression |
1 |
|
dihjat1.h |
|
2 |
|
dihjat1.u |
|
3 |
|
dihjat1.v |
|
4 |
|
dihjat1.p |
|
5 |
|
dihjat1.n |
|
6 |
|
dihjat1.i |
|
7 |
|
dihjat1.j |
|
8 |
|
dihjat1.k |
|
9 |
|
dihjat1.x |
|
10 |
|
dihjat1.o |
|
11 |
|
dihjat1lem.q |
|
12 |
|
simpr |
|
13 |
12
|
oveq1d |
|
14 |
12
|
oveq1d |
|
15 |
|
eldifi |
|
16 |
11 15
|
syl |
|
17 |
1 2 3 5 6
|
dihlsprn |
|
18 |
8 16 17
|
syl2anc |
|
19 |
1 2 10 6 7 8 18
|
djh02 |
|
20 |
1 2 8
|
dvhlmod |
|
21 |
|
eqid |
|
22 |
3 21 5
|
lspsncl |
|
23 |
20 16 22
|
syl2anc |
|
24 |
21
|
lsssubg |
|
25 |
20 23 24
|
syl2anc |
|
26 |
10 4
|
lsm02 |
|
27 |
25 26
|
syl |
|
28 |
19 27
|
eqtr4d |
|
29 |
28
|
adantr |
|
30 |
14 29
|
eqtr4d |
|
31 |
13 30
|
eqtr4d |
|
32 |
20
|
adantr |
|
33 |
1 2 6 3
|
dihrnss |
|
34 |
8 9 33
|
syl2anc |
|
35 |
3 21
|
lssss |
|
36 |
23 35
|
syl |
|
37 |
1 6 2 3 7
|
djhcl |
|
38 |
8 34 36 37
|
syl12anc |
|
39 |
1 2 6 3
|
dihrnss |
|
40 |
8 38 39
|
syl2anc |
|
41 |
40
|
adantr |
|
42 |
1 2 6 21
|
dihrnlss |
|
43 |
8 9 42
|
syl2anc |
|
44 |
21 4
|
lsmcl |
|
45 |
20 43 23 44
|
syl3anc |
|
46 |
45
|
adantr |
|
47 |
|
simplr |
|
48 |
8
|
ad2antrr |
|
49 |
9
|
ad2antrr |
|
50 |
|
simpr |
|
51 |
11
|
ad2antrr |
|
52 |
1 2 3 10 5 6 7 48 49 50 51
|
djhcvat42 |
|
53 |
47 52
|
mpand |
|
54 |
|
simprrl |
|
55 |
20
|
ad3antrrr |
|
56 |
43
|
ad3antrrr |
|
57 |
|
eldifi |
|
58 |
57
|
ad2antrl |
|
59 |
3 21 5 55 56 58
|
lspsnel5 |
|
60 |
54 59
|
mpbird |
|
61 |
16
|
ad3antrrr |
|
62 |
3 5
|
lspsnid |
|
63 |
55 61 62
|
syl2anc |
|
64 |
|
simprrr |
|
65 |
|
sneq |
|
66 |
65
|
fveq2d |
|
67 |
66
|
oveq2d |
|
68 |
67
|
sseq2d |
|
69 |
68
|
rspcev |
|
70 |
63 64 69
|
syl2anc |
|
71 |
60 70
|
jca |
|
72 |
71
|
ex |
|
73 |
72
|
reximdv2 |
|
74 |
53 73
|
syld |
|
75 |
74
|
anim2d |
|
76 |
1 2 6 21
|
dihrnlss |
|
77 |
8 38 76
|
syl2anc |
|
78 |
3 21 5 20 77
|
lspsnel6 |
|
79 |
78
|
ad2antrr |
|
80 |
3 21 4 5 20 43 23
|
lsmelval2 |
|
81 |
8
|
ad2antrr |
|
82 |
43
|
ad2antrr |
|
83 |
|
simplr |
|
84 |
3 21
|
lssel |
|
85 |
82 83 84
|
syl2anc |
|
86 |
23
|
ad2antrr |
|
87 |
|
simpr |
|
88 |
3 21
|
lssel |
|
89 |
86 87 88
|
syl2anc |
|
90 |
1 2 3 4 5 6 7 81 85 89
|
djhlsmat |
|
91 |
90
|
sseq2d |
|
92 |
91
|
rexbidva |
|
93 |
92
|
rexbidva |
|
94 |
93
|
anbi2d |
|
95 |
80 94
|
bitrd |
|
96 |
95
|
ad2antrr |
|
97 |
75 79 96
|
3imtr4d |
|
98 |
10 21 32 41 46 97
|
lssssr |
|
99 |
1 2 3 4 7 8 34 36
|
djhsumss |
|
100 |
99
|
adantr |
|
101 |
98 100
|
eqssd |
|
102 |
31 101
|
pm2.61dane |
|