Metamath Proof Explorer


Theorem pmapjat1

Description: The projective map of the join of a lattice element and an atom. (Contributed by NM, 28-Jan-2012)

Ref Expression
Hypotheses pmapjat.b B=BaseK
pmapjat.j ˙=joinK
pmapjat.a A=AtomsK
pmapjat.m M=pmapK
pmapjat.p +˙=+𝑃K
Assertion pmapjat1 KHLXBQAMX˙Q=MX+˙MQ

Proof

Step Hyp Ref Expression
1 pmapjat.b B=BaseK
2 pmapjat.j ˙=joinK
3 pmapjat.a A=AtomsK
4 pmapjat.m M=pmapK
5 pmapjat.p +˙=+𝑃K
6 simp1 KHLXBQAKHL
7 1 3 atbase QAQB
8 7 3ad2ant3 KHLXBQAQB
9 1 3 4 pmapssat KHLQBMQA
10 6 8 9 syl2anc KHLXBQAMQA
11 3 5 padd02 KHLMQA+˙MQ=MQ
12 6 10 11 syl2anc KHLXBQA+˙MQ=MQ
13 12 adantr KHLXBQAX=0.K+˙MQ=MQ
14 fveq2 X=0.KMX=M0.K
15 hlatl KHLKAtLat
16 15 3ad2ant1 KHLXBQAKAtLat
17 eqid 0.K=0.K
18 17 4 pmap0 KAtLatM0.K=
19 16 18 syl KHLXBQAM0.K=
20 14 19 sylan9eqr KHLXBQAX=0.KMX=
21 20 oveq1d KHLXBQAX=0.KMX+˙MQ=+˙MQ
22 oveq1 X=0.KX˙Q=0.K˙Q
23 hlol KHLKOL
24 23 3ad2ant1 KHLXBQAKOL
25 1 2 17 olj02 KOLQB0.K˙Q=Q
26 24 8 25 syl2anc KHLXBQA0.K˙Q=Q
27 22 26 sylan9eqr KHLXBQAX=0.KX˙Q=Q
28 27 fveq2d KHLXBQAX=0.KMX˙Q=MQ
29 13 21 28 3eqtr4rd KHLXBQAX=0.KMX˙Q=MX+˙MQ
30 simpll1 KHLXBQAX0.KpAKHL
31 30 adantr KHLXBQAX0.KpApKX˙QKHL
32 simpll2 KHLXBQAX0.KpAXB
33 32 adantr KHLXBQAX0.KpApKX˙QXB
34 simplr KHLXBQAX0.KpApKX˙QpA
35 simpll3 KHLXBQAX0.KpAQA
36 35 adantr KHLXBQAX0.KpApKX˙QQA
37 33 34 36 3jca KHLXBQAX0.KpApKX˙QXBpAQA
38 simpllr KHLXBQAX0.KpApKX˙QX0.K
39 simpr KHLXBQAX0.KpApKX˙QpKX˙Q
40 eqid K=K
41 1 40 2 17 3 cvrat42 KHLXBpAQAX0.KpKX˙QqAqKXpKq˙Q
42 41 imp KHLXBpAQAX0.KpKX˙QqAqKXpKq˙Q
43 31 37 38 39 42 syl22anc KHLXBQAX0.KpApKX˙QqAqKXpKq˙Q
44 43 ex KHLXBQAX0.KpApKX˙QqAqKXpKq˙Q
45 1 40 3 4 elpmap KHLXBqMXqAqKX
46 45 3adant3 KHLXBQAqMXqAqKX
47 df-rex rMQpKq˙rrrMQpKq˙r
48 3 4 elpmapat KHLQArMQr=Q
49 48 3adant2 KHLXBQArMQr=Q
50 49 anbi1d KHLXBQArMQpKq˙rr=QpKq˙r
51 50 exbidv KHLXBQArrMQpKq˙rrr=QpKq˙r
52 47 51 bitr2id KHLXBQArr=QpKq˙rrMQpKq˙r
53 oveq2 r=Qq˙r=q˙Q
54 53 breq2d r=QpKq˙rpKq˙Q
55 54 ceqsexgv QArr=QpKq˙rpKq˙Q
56 55 3ad2ant3 KHLXBQArr=QpKq˙rpKq˙Q
57 52 56 bitr3d KHLXBQArMQpKq˙rpKq˙Q
58 46 57 anbi12d KHLXBQAqMXrMQpKq˙rqAqKXpKq˙Q
59 anass qAqKXpKq˙QqAqKXpKq˙Q
60 58 59 bitrdi KHLXBQAqMXrMQpKq˙rqAqKXpKq˙Q
61 60 rexbidv2 KHLXBQAqMXrMQpKq˙rqAqKXpKq˙Q
62 61 ad2antrr KHLXBQAX0.KpAqMXrMQpKq˙rqAqKXpKq˙Q
63 44 62 sylibrd KHLXBQAX0.KpApKX˙QqMXrMQpKq˙r
64 63 imdistanda KHLXBQAX0.KpApKX˙QpAqMXrMQpKq˙r
65 hllat KHLKLat
66 65 3ad2ant1 KHLXBQAKLat
67 simp2 KHLXBQAXB
68 1 2 latjcl KLatXBQBX˙QB
69 66 67 8 68 syl3anc KHLXBQAX˙QB
70 1 40 3 4 elpmap KHLX˙QBpMX˙QpApKX˙Q
71 6 69 70 syl2anc KHLXBQApMX˙QpApKX˙Q
72 71 adantr KHLXBQAX0.KpMX˙QpApKX˙Q
73 1 3 4 pmapssat KHLXBMXA
74 73 3adant3 KHLXBQAMXA
75 66 74 10 3jca KHLXBQAKLatMXAMQA
76 75 adantr KHLXBQAX0.KKLatMXAMQA
77 1 17 4 pmapeq0 KHLXBMX=X=0.K
78 77 3adant3 KHLXBQAMX=X=0.K
79 78 necon3bid KHLXBQAMXX0.K
80 79 biimpar KHLXBQAX0.KMX
81 simp3 KHLXBQAQA
82 17 3 atn0 KAtLatQAQ0.K
83 16 81 82 syl2anc KHLXBQAQ0.K
84 1 17 4 pmapeq0 KHLQBMQ=Q=0.K
85 6 8 84 syl2anc KHLXBQAMQ=Q=0.K
86 85 necon3bid KHLXBQAMQQ0.K
87 83 86 mpbird KHLXBQAMQ
88 87 adantr KHLXBQAX0.KMQ
89 40 2 3 5 elpaddn0 KLatMXAMQAMXMQpMX+˙MQpAqMXrMQpKq˙r
90 76 80 88 89 syl12anc KHLXBQAX0.KpMX+˙MQpAqMXrMQpKq˙r
91 64 72 90 3imtr4d KHLXBQAX0.KpMX˙QpMX+˙MQ
92 91 ssrdv KHLXBQAX0.KMX˙QMX+˙MQ
93 1 2 4 5 pmapjoin KLatXBQBMX+˙MQMX˙Q
94 66 67 8 93 syl3anc KHLXBQAMX+˙MQMX˙Q
95 94 adantr KHLXBQAX0.KMX+˙MQMX˙Q
96 92 95 eqssd KHLXBQAX0.KMX˙Q=MX+˙MQ
97 29 96 pm2.61dane KHLXBQAMX˙Q=MX+˙MQ