| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmapjat.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | pmapjat.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | pmapjat.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 |  | pmapjat.m | ⊢ 𝑀  =  ( pmap ‘ 𝐾 ) | 
						
							| 5 |  | pmapjat.p | ⊢  +   =  ( +𝑃 ‘ 𝐾 ) | 
						
							| 6 |  | simp1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  𝐾  ∈  HL ) | 
						
							| 7 | 1 3 | atbase | ⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  𝐵 ) | 
						
							| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  𝑄  ∈  𝐵 ) | 
						
							| 9 | 1 3 4 | pmapssat | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐵 )  →  ( 𝑀 ‘ 𝑄 )  ⊆  𝐴 ) | 
						
							| 10 | 6 8 9 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( 𝑀 ‘ 𝑄 )  ⊆  𝐴 ) | 
						
							| 11 | 3 5 | padd02 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑀 ‘ 𝑄 )  ⊆  𝐴 )  →  ( ∅  +  ( 𝑀 ‘ 𝑄 ) )  =  ( 𝑀 ‘ 𝑄 ) ) | 
						
							| 12 | 6 10 11 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ∅  +  ( 𝑀 ‘ 𝑄 ) )  =  ( 𝑀 ‘ 𝑄 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  =  ( 0. ‘ 𝐾 ) )  →  ( ∅  +  ( 𝑀 ‘ 𝑄 ) )  =  ( 𝑀 ‘ 𝑄 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑋  =  ( 0. ‘ 𝐾 )  →  ( 𝑀 ‘ 𝑋 )  =  ( 𝑀 ‘ ( 0. ‘ 𝐾 ) ) ) | 
						
							| 15 |  | hlatl | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  AtLat ) | 
						
							| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  𝐾  ∈  AtLat ) | 
						
							| 17 |  | eqid | ⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 ) | 
						
							| 18 | 17 4 | pmap0 | ⊢ ( 𝐾  ∈  AtLat  →  ( 𝑀 ‘ ( 0. ‘ 𝐾 ) )  =  ∅ ) | 
						
							| 19 | 16 18 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( 𝑀 ‘ ( 0. ‘ 𝐾 ) )  =  ∅ ) | 
						
							| 20 | 14 19 | sylan9eqr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  =  ( 0. ‘ 𝐾 ) )  →  ( 𝑀 ‘ 𝑋 )  =  ∅ ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  =  ( 0. ‘ 𝐾 ) )  →  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) )  =  ( ∅  +  ( 𝑀 ‘ 𝑄 ) ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑋  =  ( 0. ‘ 𝐾 )  →  ( 𝑋  ∨  𝑄 )  =  ( ( 0. ‘ 𝐾 )  ∨  𝑄 ) ) | 
						
							| 23 |  | hlol | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL ) | 
						
							| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  𝐾  ∈  OL ) | 
						
							| 25 | 1 2 17 | olj02 | ⊢ ( ( 𝐾  ∈  OL  ∧  𝑄  ∈  𝐵 )  →  ( ( 0. ‘ 𝐾 )  ∨  𝑄 )  =  𝑄 ) | 
						
							| 26 | 24 8 25 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ( 0. ‘ 𝐾 )  ∨  𝑄 )  =  𝑄 ) | 
						
							| 27 | 22 26 | sylan9eqr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  =  ( 0. ‘ 𝐾 ) )  →  ( 𝑋  ∨  𝑄 )  =  𝑄 ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  =  ( 0. ‘ 𝐾 ) )  →  ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) )  =  ( 𝑀 ‘ 𝑄 ) ) | 
						
							| 29 | 13 21 28 | 3eqtr4rd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  =  ( 0. ‘ 𝐾 ) )  →  ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) )  =  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) ) ) | 
						
							| 30 |  | simpll1 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  ∧  𝑝  ∈  𝐴 )  →  𝐾  ∈  HL ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  ∧  𝑝  ∈  𝐴 )  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) )  →  𝐾  ∈  HL ) | 
						
							| 32 |  | simpll2 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  ∧  𝑝  ∈  𝐴 )  →  𝑋  ∈  𝐵 ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  ∧  𝑝  ∈  𝐴 )  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 34 |  | simplr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  ∧  𝑝  ∈  𝐴 )  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) )  →  𝑝  ∈  𝐴 ) | 
						
							| 35 |  | simpll3 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  ∧  𝑝  ∈  𝐴 )  →  𝑄  ∈  𝐴 ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  ∧  𝑝  ∈  𝐴 )  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 37 | 33 34 36 | 3jca | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  ∧  𝑝  ∈  𝐴 )  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) )  →  ( 𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) ) | 
						
							| 38 |  | simpllr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  ∧  𝑝  ∈  𝐴 )  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) )  →  𝑋  ≠  ( 0. ‘ 𝐾 ) ) | 
						
							| 39 |  | simpr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  ∧  𝑝  ∈  𝐴 )  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) )  →  𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) ) | 
						
							| 40 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 41 | 1 40 2 17 3 | cvrat42 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑋  ≠  ( 0. ‘ 𝐾 )  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑄 ) ) ) ) | 
						
							| 42 | 41 | imp | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( 𝑋  ≠  ( 0. ‘ 𝐾 )  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑄 ) ) ) | 
						
							| 43 | 31 37 38 39 42 | syl22anc | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  ∧  𝑝  ∈  𝐴 )  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑄 ) ) ) | 
						
							| 44 | 43 | ex | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  ∧  𝑝  ∈  𝐴 )  →  ( 𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑄 ) ) ) ) | 
						
							| 45 | 1 40 3 4 | elpmap | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  →  ( 𝑞  ∈  ( 𝑀 ‘ 𝑋 )  ↔  ( 𝑞  ∈  𝐴  ∧  𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) | 
						
							| 46 | 45 | 3adant3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( 𝑞  ∈  ( 𝑀 ‘ 𝑋 )  ↔  ( 𝑞  ∈  𝐴  ∧  𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) | 
						
							| 47 |  | df-rex | ⊢ ( ∃ 𝑟  ∈  ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 )  ↔  ∃ 𝑟 ( 𝑟  ∈  ( 𝑀 ‘ 𝑄 )  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 ) ) ) | 
						
							| 48 | 3 4 | elpmapat | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴 )  →  ( 𝑟  ∈  ( 𝑀 ‘ 𝑄 )  ↔  𝑟  =  𝑄 ) ) | 
						
							| 49 | 48 | 3adant2 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( 𝑟  ∈  ( 𝑀 ‘ 𝑄 )  ↔  𝑟  =  𝑄 ) ) | 
						
							| 50 | 49 | anbi1d | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ( 𝑟  ∈  ( 𝑀 ‘ 𝑄 )  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 ) )  ↔  ( 𝑟  =  𝑄  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 ) ) ) ) | 
						
							| 51 | 50 | exbidv | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ∃ 𝑟 ( 𝑟  ∈  ( 𝑀 ‘ 𝑄 )  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 ) )  ↔  ∃ 𝑟 ( 𝑟  =  𝑄  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 ) ) ) ) | 
						
							| 52 | 47 51 | bitr2id | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ∃ 𝑟 ( 𝑟  =  𝑄  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 ) )  ↔  ∃ 𝑟  ∈  ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 ) ) ) | 
						
							| 53 |  | oveq2 | ⊢ ( 𝑟  =  𝑄  →  ( 𝑞  ∨  𝑟 )  =  ( 𝑞  ∨  𝑄 ) ) | 
						
							| 54 | 53 | breq2d | ⊢ ( 𝑟  =  𝑄  →  ( 𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 )  ↔  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑄 ) ) ) | 
						
							| 55 | 54 | ceqsexgv | ⊢ ( 𝑄  ∈  𝐴  →  ( ∃ 𝑟 ( 𝑟  =  𝑄  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 ) )  ↔  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑄 ) ) ) | 
						
							| 56 | 55 | 3ad2ant3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ∃ 𝑟 ( 𝑟  =  𝑄  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 ) )  ↔  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑄 ) ) ) | 
						
							| 57 | 52 56 | bitr3d | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ∃ 𝑟  ∈  ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 )  ↔  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑄 ) ) ) | 
						
							| 58 | 46 57 | anbi12d | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ( 𝑞  ∈  ( 𝑀 ‘ 𝑋 )  ∧  ∃ 𝑟  ∈  ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 ) )  ↔  ( ( 𝑞  ∈  𝐴  ∧  𝑞 ( le ‘ 𝐾 ) 𝑋 )  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑄 ) ) ) ) | 
						
							| 59 |  | anass | ⊢ ( ( ( 𝑞  ∈  𝐴  ∧  𝑞 ( le ‘ 𝐾 ) 𝑋 )  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑄 ) )  ↔  ( 𝑞  ∈  𝐴  ∧  ( 𝑞 ( le ‘ 𝐾 ) 𝑋  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑄 ) ) ) ) | 
						
							| 60 | 58 59 | bitrdi | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ( 𝑞  ∈  ( 𝑀 ‘ 𝑋 )  ∧  ∃ 𝑟  ∈  ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 ) )  ↔  ( 𝑞  ∈  𝐴  ∧  ( 𝑞 ( le ‘ 𝐾 ) 𝑋  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑄 ) ) ) ) ) | 
						
							| 61 | 60 | rexbidv2 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ∃ 𝑞  ∈  ( 𝑀 ‘ 𝑋 ) ∃ 𝑟  ∈  ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 )  ↔  ∃ 𝑞  ∈  𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑄 ) ) ) ) | 
						
							| 62 | 61 | ad2antrr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  ∧  𝑝  ∈  𝐴 )  →  ( ∃ 𝑞  ∈  ( 𝑀 ‘ 𝑋 ) ∃ 𝑟  ∈  ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 )  ↔  ∃ 𝑞  ∈  𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑄 ) ) ) ) | 
						
							| 63 | 44 62 | sylibrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  ∧  𝑝  ∈  𝐴 )  →  ( 𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 )  →  ∃ 𝑞  ∈  ( 𝑀 ‘ 𝑋 ) ∃ 𝑟  ∈  ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 ) ) ) | 
						
							| 64 | 63 | imdistanda | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  →  ( ( 𝑝  ∈  𝐴  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) )  →  ( 𝑝  ∈  𝐴  ∧  ∃ 𝑞  ∈  ( 𝑀 ‘ 𝑋 ) ∃ 𝑟  ∈  ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 ) ) ) ) | 
						
							| 65 |  | hllat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat ) | 
						
							| 66 | 65 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  𝐾  ∈  Lat ) | 
						
							| 67 |  | simp2 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  𝑋  ∈  𝐵 ) | 
						
							| 68 | 1 2 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( 𝑋  ∨  𝑄 )  ∈  𝐵 ) | 
						
							| 69 | 66 67 8 68 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( 𝑋  ∨  𝑄 )  ∈  𝐵 ) | 
						
							| 70 | 1 40 3 4 | elpmap | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∨  𝑄 )  ∈  𝐵 )  →  ( 𝑝  ∈  ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) )  ↔  ( 𝑝  ∈  𝐴  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) ) ) ) | 
						
							| 71 | 6 69 70 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( 𝑝  ∈  ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) )  ↔  ( 𝑝  ∈  𝐴  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) ) ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  →  ( 𝑝  ∈  ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) )  ↔  ( 𝑝  ∈  𝐴  ∧  𝑝 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) ) ) ) | 
						
							| 73 | 1 3 4 | pmapssat | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  →  ( 𝑀 ‘ 𝑋 )  ⊆  𝐴 ) | 
						
							| 74 | 73 | 3adant3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( 𝑀 ‘ 𝑋 )  ⊆  𝐴 ) | 
						
							| 75 | 66 74 10 | 3jca | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( 𝐾  ∈  Lat  ∧  ( 𝑀 ‘ 𝑋 )  ⊆  𝐴  ∧  ( 𝑀 ‘ 𝑄 )  ⊆  𝐴 ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  →  ( 𝐾  ∈  Lat  ∧  ( 𝑀 ‘ 𝑋 )  ⊆  𝐴  ∧  ( 𝑀 ‘ 𝑄 )  ⊆  𝐴 ) ) | 
						
							| 77 | 1 17 4 | pmapeq0 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑀 ‘ 𝑋 )  =  ∅  ↔  𝑋  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 78 | 77 | 3adant3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ( 𝑀 ‘ 𝑋 )  =  ∅  ↔  𝑋  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 79 | 78 | necon3bid | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ( 𝑀 ‘ 𝑋 )  ≠  ∅  ↔  𝑋  ≠  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 80 | 79 | biimpar | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  →  ( 𝑀 ‘ 𝑋 )  ≠  ∅ ) | 
						
							| 81 |  | simp3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  𝑄  ∈  𝐴 ) | 
						
							| 82 | 17 3 | atn0 | ⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑄  ∈  𝐴 )  →  𝑄  ≠  ( 0. ‘ 𝐾 ) ) | 
						
							| 83 | 16 81 82 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  𝑄  ≠  ( 0. ‘ 𝐾 ) ) | 
						
							| 84 | 1 17 4 | pmapeq0 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐵 )  →  ( ( 𝑀 ‘ 𝑄 )  =  ∅  ↔  𝑄  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 85 | 6 8 84 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ( 𝑀 ‘ 𝑄 )  =  ∅  ↔  𝑄  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 86 | 85 | necon3bid | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ( 𝑀 ‘ 𝑄 )  ≠  ∅  ↔  𝑄  ≠  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 87 | 83 86 | mpbird | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( 𝑀 ‘ 𝑄 )  ≠  ∅ ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  →  ( 𝑀 ‘ 𝑄 )  ≠  ∅ ) | 
						
							| 89 | 40 2 3 5 | elpaddn0 | ⊢ ( ( ( 𝐾  ∈  Lat  ∧  ( 𝑀 ‘ 𝑋 )  ⊆  𝐴  ∧  ( 𝑀 ‘ 𝑄 )  ⊆  𝐴 )  ∧  ( ( 𝑀 ‘ 𝑋 )  ≠  ∅  ∧  ( 𝑀 ‘ 𝑄 )  ≠  ∅ ) )  →  ( 𝑝  ∈  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) )  ↔  ( 𝑝  ∈  𝐴  ∧  ∃ 𝑞  ∈  ( 𝑀 ‘ 𝑋 ) ∃ 𝑟  ∈  ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 ) ) ) ) | 
						
							| 90 | 76 80 88 89 | syl12anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  →  ( 𝑝  ∈  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) )  ↔  ( 𝑝  ∈  𝐴  ∧  ∃ 𝑞  ∈  ( 𝑀 ‘ 𝑋 ) ∃ 𝑟  ∈  ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞  ∨  𝑟 ) ) ) ) | 
						
							| 91 | 64 72 90 | 3imtr4d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  →  ( 𝑝  ∈  ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) )  →  𝑝  ∈  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) ) ) ) | 
						
							| 92 | 91 | ssrdv | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  →  ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) )  ⊆  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) ) ) | 
						
							| 93 | 1 2 4 5 | pmapjoin | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) )  ⊆  ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) ) ) | 
						
							| 94 | 66 67 8 93 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) )  ⊆  ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) ) ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  →  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) )  ⊆  ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) ) ) | 
						
							| 96 | 92 95 | eqssd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ( 0. ‘ 𝐾 ) )  →  ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) )  =  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) ) ) | 
						
							| 97 | 29 96 | pm2.61dane | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) )  =  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) ) ) |