Step |
Hyp |
Ref |
Expression |
1 |
|
pmap0.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
2 |
|
pmap0.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
4 |
3 1
|
atl0cl |
⊢ ( 𝐾 ∈ AtLat → 0 ∈ ( Base ‘ 𝐾 ) ) |
5 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
7 |
3 5 6 2
|
pmapval |
⊢ ( ( 𝐾 ∈ AtLat ∧ 0 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ 0 ) = { 𝑎 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑎 ( le ‘ 𝐾 ) 0 } ) |
8 |
4 7
|
mpdan |
⊢ ( 𝐾 ∈ AtLat → ( 𝑀 ‘ 0 ) = { 𝑎 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑎 ( le ‘ 𝐾 ) 0 } ) |
9 |
5 1 6
|
atnle0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑎 ∈ ( Atoms ‘ 𝐾 ) ) → ¬ 𝑎 ( le ‘ 𝐾 ) 0 ) |
10 |
9
|
nrexdv |
⊢ ( 𝐾 ∈ AtLat → ¬ ∃ 𝑎 ∈ ( Atoms ‘ 𝐾 ) 𝑎 ( le ‘ 𝐾 ) 0 ) |
11 |
|
rabn0 |
⊢ ( { 𝑎 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑎 ( le ‘ 𝐾 ) 0 } ≠ ∅ ↔ ∃ 𝑎 ∈ ( Atoms ‘ 𝐾 ) 𝑎 ( le ‘ 𝐾 ) 0 ) |
12 |
10 11
|
sylnibr |
⊢ ( 𝐾 ∈ AtLat → ¬ { 𝑎 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑎 ( le ‘ 𝐾 ) 0 } ≠ ∅ ) |
13 |
|
nne |
⊢ ( ¬ { 𝑎 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑎 ( le ‘ 𝐾 ) 0 } ≠ ∅ ↔ { 𝑎 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑎 ( le ‘ 𝐾 ) 0 } = ∅ ) |
14 |
12 13
|
sylib |
⊢ ( 𝐾 ∈ AtLat → { 𝑎 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑎 ( le ‘ 𝐾 ) 0 } = ∅ ) |
15 |
8 14
|
eqtrd |
⊢ ( 𝐾 ∈ AtLat → ( 𝑀 ‘ 0 ) = ∅ ) |