Metamath Proof Explorer


Theorem pmap0

Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of MaedaMaeda p. 62. (Contributed by NM, 17-Oct-2011)

Ref Expression
Hypotheses pmap0.z 0˙=0.K
pmap0.m M=pmapK
Assertion pmap0 KAtLatM0˙=

Proof

Step Hyp Ref Expression
1 pmap0.z 0˙=0.K
2 pmap0.m M=pmapK
3 eqid BaseK=BaseK
4 3 1 atl0cl KAtLat0˙BaseK
5 eqid K=K
6 eqid AtomsK=AtomsK
7 3 5 6 2 pmapval KAtLat0˙BaseKM0˙=aAtomsK|aK0˙
8 4 7 mpdan KAtLatM0˙=aAtomsK|aK0˙
9 5 1 6 atnle0 KAtLataAtomsK¬aK0˙
10 9 nrexdv KAtLat¬aAtomsKaK0˙
11 rabn0 aAtomsK|aK0˙aAtomsKaK0˙
12 10 11 sylnibr KAtLat¬aAtomsK|aK0˙
13 nne ¬aAtomsK|aK0˙aAtomsK|aK0˙=
14 12 13 sylib KAtLataAtomsK|aK0˙=
15 8 14 eqtrd KAtLatM0˙=