Metamath Proof Explorer


Theorem pmapval

Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 2-Oct-2011)

Ref Expression
Hypotheses pmapfval.b B=BaseK
pmapfval.l ˙=K
pmapfval.a A=AtomsK
pmapfval.m M=pmapK
Assertion pmapval KCXBMX=aA|a˙X

Proof

Step Hyp Ref Expression
1 pmapfval.b B=BaseK
2 pmapfval.l ˙=K
3 pmapfval.a A=AtomsK
4 pmapfval.m M=pmapK
5 1 2 3 4 pmapfval KCM=xBaA|a˙x
6 5 fveq1d KCMX=xBaA|a˙xX
7 breq2 x=Xa˙xa˙X
8 7 rabbidv x=XaA|a˙x=aA|a˙X
9 eqid xBaA|a˙x=xBaA|a˙x
10 3 fvexi AV
11 10 rabex aA|a˙XV
12 8 9 11 fvmpt XBxBaA|a˙xX=aA|a˙X
13 6 12 sylan9eq KCXBMX=aA|a˙X