Metamath Proof Explorer


Theorem elpmap

Description: Member of a projective map. (Contributed by NM, 27-Jan-2012)

Ref Expression
Hypotheses pmapfval.b B=BaseK
pmapfval.l ˙=K
pmapfval.a A=AtomsK
pmapfval.m M=pmapK
Assertion elpmap KCXBPMXPAP˙X

Proof

Step Hyp Ref Expression
1 pmapfval.b B=BaseK
2 pmapfval.l ˙=K
3 pmapfval.a A=AtomsK
4 pmapfval.m M=pmapK
5 1 2 3 4 pmapval KCXBMX=xA|x˙X
6 5 eleq2d KCXBPMXPxA|x˙X
7 breq1 x=Px˙XP˙X
8 7 elrab PxA|x˙XPAP˙X
9 6 8 bitrdi KCXBPMXPAP˙X