| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmapfval.b |
|- B = ( Base ` K ) |
| 2 |
|
pmapfval.l |
|- .<_ = ( le ` K ) |
| 3 |
|
pmapfval.a |
|- A = ( Atoms ` K ) |
| 4 |
|
pmapfval.m |
|- M = ( pmap ` K ) |
| 5 |
1 2 3 4
|
pmapval |
|- ( ( K e. C /\ X e. B ) -> ( M ` X ) = { x e. A | x .<_ X } ) |
| 6 |
5
|
eleq2d |
|- ( ( K e. C /\ X e. B ) -> ( P e. ( M ` X ) <-> P e. { x e. A | x .<_ X } ) ) |
| 7 |
|
breq1 |
|- ( x = P -> ( x .<_ X <-> P .<_ X ) ) |
| 8 |
7
|
elrab |
|- ( P e. { x e. A | x .<_ X } <-> ( P e. A /\ P .<_ X ) ) |
| 9 |
6 8
|
bitrdi |
|- ( ( K e. C /\ X e. B ) -> ( P e. ( M ` X ) <-> ( P e. A /\ P .<_ X ) ) ) |