Metamath Proof Explorer


Theorem atnle0

Description: An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011)

Ref Expression
Hypotheses atnle0.l ˙=K
atnle0.z 0˙=0.K
atnle0.a A=AtomsK
Assertion atnle0 KAtLatPA¬P˙0˙

Proof

Step Hyp Ref Expression
1 atnle0.l ˙=K
2 atnle0.z 0˙=0.K
3 atnle0.a A=AtomsK
4 atlpos KAtLatKPoset
5 4 adantr KAtLatPAKPoset
6 eqid BaseK=BaseK
7 6 2 atl0cl KAtLat0˙BaseK
8 7 adantr KAtLatPA0˙BaseK
9 6 3 atbase PAPBaseK
10 9 adantl KAtLatPAPBaseK
11 eqid K=K
12 2 11 3 atcvr0 KAtLatPA0˙KP
13 6 1 11 cvrnle KPoset0˙BaseKPBaseK0˙KP¬P˙0˙
14 5 8 10 12 13 syl31anc KAtLatPA¬P˙0˙