Description: Member of the projective map of an atom. (Contributed by NM, 27-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| pmapat.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | elpmapat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ∈ ( 𝑀 ‘ 𝑃 ) ↔ 𝑋 = 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | pmapat.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 3 | 1 2 | pmapat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑃 ) = { 𝑃 } ) |
| 4 | 3 | eleq2d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ∈ ( 𝑀 ‘ 𝑃 ) ↔ 𝑋 ∈ { 𝑃 } ) ) |
| 5 | elsn2g | ⊢ ( 𝑃 ∈ 𝐴 → ( 𝑋 ∈ { 𝑃 } ↔ 𝑋 = 𝑃 ) ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ∈ { 𝑃 } ↔ 𝑋 = 𝑃 ) ) |
| 7 | 4 6 | bitrd | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ∈ ( 𝑀 ‘ 𝑃 ) ↔ 𝑋 = 𝑃 ) ) |