Metamath Proof Explorer


Theorem padd02

Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012)

Ref Expression
Hypotheses padd0.a A=AtomsK
padd0.p +˙=+𝑃K
Assertion padd02 KBXA+˙X=X

Proof

Step Hyp Ref Expression
1 padd0.a A=AtomsK
2 padd0.p +˙=+𝑃K
3 simpl KBXAKB
4 0ss A
5 4 a1i KBXAA
6 simpr KBXAXA
7 3 5 6 3jca KBXAKBAXA
8 neirr ¬
9 8 intnanr ¬X
10 1 2 paddval0 KBAXA¬X+˙X=X
11 7 9 10 sylancl KBXA+˙X=X
12 uncom X=X
13 un0 X=X
14 12 13 eqtri X=X
15 11 14 eqtrdi KBXA+˙X=X