| Step |
Hyp |
Ref |
Expression |
| 1 |
|
padd0.a |
|- A = ( Atoms ` K ) |
| 2 |
|
padd0.p |
|- .+ = ( +P ` K ) |
| 3 |
|
simpl |
|- ( ( K e. B /\ X C_ A ) -> K e. B ) |
| 4 |
|
0ss |
|- (/) C_ A |
| 5 |
4
|
a1i |
|- ( ( K e. B /\ X C_ A ) -> (/) C_ A ) |
| 6 |
|
simpr |
|- ( ( K e. B /\ X C_ A ) -> X C_ A ) |
| 7 |
3 5 6
|
3jca |
|- ( ( K e. B /\ X C_ A ) -> ( K e. B /\ (/) C_ A /\ X C_ A ) ) |
| 8 |
|
neirr |
|- -. (/) =/= (/) |
| 9 |
8
|
intnanr |
|- -. ( (/) =/= (/) /\ X =/= (/) ) |
| 10 |
1 2
|
paddval0 |
|- ( ( ( K e. B /\ (/) C_ A /\ X C_ A ) /\ -. ( (/) =/= (/) /\ X =/= (/) ) ) -> ( (/) .+ X ) = ( (/) u. X ) ) |
| 11 |
7 9 10
|
sylancl |
|- ( ( K e. B /\ X C_ A ) -> ( (/) .+ X ) = ( (/) u. X ) ) |
| 12 |
|
uncom |
|- ( (/) u. X ) = ( X u. (/) ) |
| 13 |
|
un0 |
|- ( X u. (/) ) = X |
| 14 |
12 13
|
eqtri |
|- ( (/) u. X ) = X |
| 15 |
11 14
|
eqtrdi |
|- ( ( K e. B /\ X C_ A ) -> ( (/) .+ X ) = X ) |