| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddfval.l |
|
| 2 |
|
paddfval.j |
|
| 3 |
|
paddfval.a |
|
| 4 |
|
paddfval.p |
|
| 5 |
1 2 3 4
|
elpadd |
|
| 6 |
5
|
adantr |
|
| 7 |
|
simpl2 |
|
| 8 |
7
|
sseld |
|
| 9 |
|
simpll1 |
|
| 10 |
|
ssel2 |
|
| 11 |
10
|
3ad2antl2 |
|
| 12 |
11
|
adantr |
|
| 13 |
|
eqid |
|
| 14 |
13 3
|
atbase |
|
| 15 |
12 14
|
syl |
|
| 16 |
|
simpl3 |
|
| 17 |
16
|
sselda |
|
| 18 |
13 3
|
atbase |
|
| 19 |
17 18
|
syl |
|
| 20 |
13 1 2
|
latlej1 |
|
| 21 |
9 15 19 20
|
syl3anc |
|
| 22 |
21
|
reximdva0 |
|
| 23 |
22
|
exp31 |
|
| 24 |
23
|
com23 |
|
| 25 |
24
|
imp |
|
| 26 |
25
|
ancld |
|
| 27 |
|
oveq1 |
|
| 28 |
27
|
breq2d |
|
| 29 |
28
|
rexbidv |
|
| 30 |
29
|
rspcev |
|
| 31 |
26 30
|
syl6 |
|
| 32 |
31
|
adantrl |
|
| 33 |
8 32
|
jcad |
|
| 34 |
|
simpl3 |
|
| 35 |
34
|
sseld |
|
| 36 |
|
simpll1 |
|
| 37 |
|
ssel2 |
|
| 38 |
37
|
3ad2antl2 |
|
| 39 |
38
|
adantr |
|
| 40 |
13 3
|
atbase |
|
| 41 |
39 40
|
syl |
|
| 42 |
|
simpl3 |
|
| 43 |
42
|
sselda |
|
| 44 |
43 14
|
syl |
|
| 45 |
13 1 2
|
latlej2 |
|
| 46 |
36 41 44 45
|
syl3anc |
|
| 47 |
46
|
ex |
|
| 48 |
47
|
ancld |
|
| 49 |
|
oveq2 |
|
| 50 |
49
|
breq2d |
|
| 51 |
50
|
rspcev |
|
| 52 |
48 51
|
syl6 |
|
| 53 |
52
|
impancom |
|
| 54 |
53
|
ancld |
|
| 55 |
54
|
eximdv |
|
| 56 |
|
n0 |
|
| 57 |
|
df-rex |
|
| 58 |
55 56 57
|
3imtr4g |
|
| 59 |
58
|
impancom |
|
| 60 |
59
|
adantrr |
|
| 61 |
35 60
|
jcad |
|
| 62 |
33 61
|
jaod |
|
| 63 |
|
pm4.72 |
|
| 64 |
62 63
|
sylib |
|
| 65 |
6 64
|
bitr4d |
|