Metamath Proof Explorer


Theorem pmapjoin

Description: The projective map of the join of two lattice elements. Part of Equation 15.5.3 of MaedaMaeda p. 63. (Contributed by NM, 27-Jan-2012)

Ref Expression
Hypotheses pmapjoin.b B=BaseK
pmapjoin.j ˙=joinK
pmapjoin.m M=pmapK
pmapjoin.p +˙=+𝑃K
Assertion pmapjoin KLatXBYBMX+˙MYMX˙Y

Proof

Step Hyp Ref Expression
1 pmapjoin.b B=BaseK
2 pmapjoin.j ˙=joinK
3 pmapjoin.m M=pmapK
4 pmapjoin.p +˙=+𝑃K
5 simpl pAtomsKpKXpAtomsK
6 5 a1i KLatXBYBpAtomsKpKXpAtomsK
7 eqid AtomsK=AtomsK
8 1 7 atbase pAtomsKpB
9 eqid K=K
10 1 9 2 latlej1 KLatXBYBXKX˙Y
11 10 adantr KLatXBYBpBXKX˙Y
12 simpl1 KLatXBYBpBKLat
13 simpr KLatXBYBpBpB
14 simpl2 KLatXBYBpBXB
15 1 2 latjcl KLatXBYBX˙YB
16 15 adantr KLatXBYBpBX˙YB
17 1 9 lattr KLatpBXBX˙YBpKXXKX˙YpKX˙Y
18 12 13 14 16 17 syl13anc KLatXBYBpBpKXXKX˙YpKX˙Y
19 11 18 mpan2d KLatXBYBpBpKXpKX˙Y
20 19 expimpd KLatXBYBpBpKXpKX˙Y
21 8 20 sylani KLatXBYBpAtomsKpKXpKX˙Y
22 6 21 jcad KLatXBYBpAtomsKpKXpAtomsKpKX˙Y
23 simpl pAtomsKpKYpAtomsK
24 23 a1i KLatXBYBpAtomsKpKYpAtomsK
25 1 9 2 latlej2 KLatXBYBYKX˙Y
26 25 adantr KLatXBYBpBYKX˙Y
27 simpl3 KLatXBYBpBYB
28 1 9 lattr KLatpBYBX˙YBpKYYKX˙YpKX˙Y
29 12 13 27 16 28 syl13anc KLatXBYBpBpKYYKX˙YpKX˙Y
30 26 29 mpan2d KLatXBYBpBpKYpKX˙Y
31 30 expimpd KLatXBYBpBpKYpKX˙Y
32 8 31 sylani KLatXBYBpAtomsKpKYpKX˙Y
33 24 32 jcad KLatXBYBpAtomsKpKYpAtomsKpKX˙Y
34 22 33 jaod KLatXBYBpAtomsKpKXpAtomsKpKYpAtomsKpKX˙Y
35 simpl pAtomsKqMXrMYpKq˙rpAtomsK
36 35 a1i KLatXBYBpAtomsKqMXrMYpKq˙rpAtomsK
37 1 9 7 3 elpmap KLatXBqMXqAtomsKqKX
38 37 3adant3 KLatXBYBqMXqAtomsKqKX
39 1 9 7 3 elpmap KLatYBrMYrAtomsKrKY
40 39 3adant2 KLatXBYBrMYrAtomsKrKY
41 38 40 anbi12d KLatXBYBqMXrMYqAtomsKqKXrAtomsKrKY
42 an4 qAtomsKqKXrAtomsKrKYqAtomsKrAtomsKqKXrKY
43 41 42 bitrdi KLatXBYBqMXrMYqAtomsKrAtomsKqKXrKY
44 43 adantr KLatXBYBpBqMXrMYqAtomsKrAtomsKqKXrKY
45 1 7 atbase qAtomsKqB
46 1 7 atbase rAtomsKrB
47 45 46 anim12i qAtomsKrAtomsKqBrB
48 simpll1 KLatXBYBpBqBrBKLat
49 simprl KLatXBYBpBqBrBqB
50 simpll2 KLatXBYBpBqBrBXB
51 simprr KLatXBYBpBqBrBrB
52 simpll3 KLatXBYBpBqBrBYB
53 1 9 2 latjlej12 KLatqBXBrBYBqKXrKYq˙rKX˙Y
54 48 49 50 51 52 53 syl122anc KLatXBYBpBqBrBqKXrKYq˙rKX˙Y
55 simplr KLatXBYBpBqBrBpB
56 1 2 latjcl KLatqBrBq˙rB
57 48 49 51 56 syl3anc KLatXBYBpBqBrBq˙rB
58 15 ad2antrr KLatXBYBpBqBrBX˙YB
59 1 9 lattr KLatpBq˙rBX˙YBpKq˙rq˙rKX˙YpKX˙Y
60 48 55 57 58 59 syl13anc KLatXBYBpBqBrBpKq˙rq˙rKX˙YpKX˙Y
61 60 expcomd KLatXBYBpBqBrBq˙rKX˙YpKq˙rpKX˙Y
62 54 61 syld KLatXBYBpBqBrBqKXrKYpKq˙rpKX˙Y
63 62 expimpd KLatXBYBpBqBrBqKXrKYpKq˙rpKX˙Y
64 47 63 sylani KLatXBYBpBqAtomsKrAtomsKqKXrKYpKq˙rpKX˙Y
65 44 64 sylbid KLatXBYBpBqMXrMYpKq˙rpKX˙Y
66 65 rexlimdvv KLatXBYBpBqMXrMYpKq˙rpKX˙Y
67 66 expimpd KLatXBYBpBqMXrMYpKq˙rpKX˙Y
68 8 67 sylani KLatXBYBpAtomsKqMXrMYpKq˙rpKX˙Y
69 36 68 jcad KLatXBYBpAtomsKqMXrMYpKq˙rpAtomsKpKX˙Y
70 34 69 jaod KLatXBYBpAtomsKpKXpAtomsKpKYpAtomsKqMXrMYpKq˙rpAtomsKpKX˙Y
71 simp1 KLatXBYBKLat
72 1 7 3 pmapssat KLatXBMXAtomsK
73 72 3adant3 KLatXBYBMXAtomsK
74 1 7 3 pmapssat KLatYBMYAtomsK
75 74 3adant2 KLatXBYBMYAtomsK
76 9 2 7 4 elpadd KLatMXAtomsKMYAtomsKpMX+˙MYpMXpMYpAtomsKqMXrMYpKq˙r
77 71 73 75 76 syl3anc KLatXBYBpMX+˙MYpMXpMYpAtomsKqMXrMYpKq˙r
78 1 9 7 3 elpmap KLatXBpMXpAtomsKpKX
79 78 3adant3 KLatXBYBpMXpAtomsKpKX
80 1 9 7 3 elpmap KLatYBpMYpAtomsKpKY
81 80 3adant2 KLatXBYBpMYpAtomsKpKY
82 79 81 orbi12d KLatXBYBpMXpMYpAtomsKpKXpAtomsKpKY
83 82 orbi1d KLatXBYBpMXpMYpAtomsKqMXrMYpKq˙rpAtomsKpKXpAtomsKpKYpAtomsKqMXrMYpKq˙r
84 77 83 bitrd KLatXBYBpMX+˙MYpAtomsKpKXpAtomsKpKYpAtomsKqMXrMYpKq˙r
85 1 9 7 3 elpmap KLatX˙YBpMX˙YpAtomsKpKX˙Y
86 71 15 85 syl2anc KLatXBYBpMX˙YpAtomsKpKX˙Y
87 70 84 86 3imtr4d KLatXBYBpMX+˙MYpMX˙Y
88 87 ssrdv KLatXBYBMX+˙MYMX˙Y