Metamath Proof Explorer


Theorem pmapjat2

Description: The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012)

Ref Expression
Hypotheses pmapjat.b B=BaseK
pmapjat.j ˙=joinK
pmapjat.a A=AtomsK
pmapjat.m M=pmapK
pmapjat.p +˙=+𝑃K
Assertion pmapjat2 KHLXBQAMQ˙X=MQ+˙MX

Proof

Step Hyp Ref Expression
1 pmapjat.b B=BaseK
2 pmapjat.j ˙=joinK
3 pmapjat.a A=AtomsK
4 pmapjat.m M=pmapK
5 pmapjat.p +˙=+𝑃K
6 1 2 3 4 5 pmapjat1 KHLXBQAMX˙Q=MX+˙MQ
7 hllat KHLKLat
8 7 3ad2ant1 KHLXBQAKLat
9 1 3 atbase QAQB
10 9 3ad2ant3 KHLXBQAQB
11 simp2 KHLXBQAXB
12 1 2 latjcom KLatQBXBQ˙X=X˙Q
13 8 10 11 12 syl3anc KHLXBQAQ˙X=X˙Q
14 13 fveq2d KHLXBQAMQ˙X=MX˙Q
15 simp1 KHLXBQAKHL
16 1 3 4 pmapssat KHLQBMQA
17 15 10 16 syl2anc KHLXBQAMQA
18 1 3 4 pmapssat KHLXBMXA
19 18 3adant3 KHLXBQAMXA
20 3 5 paddcom KLatMQAMXAMQ+˙MX=MX+˙MQ
21 8 17 19 20 syl3anc KHLXBQAMQ+˙MX=MX+˙MQ
22 6 14 21 3eqtr4d KHLXBQAMQ˙X=MQ+˙MX