Metamath Proof Explorer


Theorem lsm02

Description: Subgroup sum with the zero subgroup. (Contributed by NM, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsm01.z 0 ˙ = 0 G
lsm01.p ˙ = LSSum G
Assertion lsm02 X SubGrp G 0 ˙ ˙ X = X

Proof

Step Hyp Ref Expression
1 lsm01.z 0 ˙ = 0 G
2 lsm01.p ˙ = LSSum G
3 subgrcl X SubGrp G G Grp
4 1 0subg G Grp 0 ˙ SubGrp G
5 3 4 syl X SubGrp G 0 ˙ SubGrp G
6 id X SubGrp G X SubGrp G
7 1 subg0cl X SubGrp G 0 ˙ X
8 7 snssd X SubGrp G 0 ˙ X
9 2 lsmss1 0 ˙ SubGrp G X SubGrp G 0 ˙ X 0 ˙ ˙ X = X
10 5 6 8 9 syl3anc X SubGrp G 0 ˙ ˙ X = X