Description: The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subglsm.h | |
|
subglsm.s | |
||
subglsm.a | |
||
Assertion | subglsm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subglsm.h | |
|
2 | subglsm.s | |
|
3 | subglsm.a | |
|
4 | simp11 | |
|
5 | eqid | |
|
6 | 1 5 | ressplusg | |
7 | 4 6 | syl | |
8 | 7 | oveqd | |
9 | 8 | mpoeq3dva | |
10 | 9 | rneqd | |
11 | subgrcl | |
|
12 | 11 | 3ad2ant1 | |
13 | simp2 | |
|
14 | eqid | |
|
15 | 14 | subgss | |
16 | 15 | 3ad2ant1 | |
17 | 13 16 | sstrd | |
18 | simp3 | |
|
19 | 18 16 | sstrd | |
20 | 14 5 2 | lsmvalx | |
21 | 12 17 19 20 | syl3anc | |
22 | 1 | subggrp | |
23 | 22 | 3ad2ant1 | |
24 | 1 | subgbas | |
25 | 24 | 3ad2ant1 | |
26 | 13 25 | sseqtrd | |
27 | 18 25 | sseqtrd | |
28 | eqid | |
|
29 | eqid | |
|
30 | 28 29 3 | lsmvalx | |
31 | 23 26 27 30 | syl3anc | |
32 | 10 21 31 | 3eqtr4d | |