Metamath Proof Explorer


Theorem subglsm

Description: The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses subglsm.h H=G𝑠S
subglsm.s ˙=LSSumG
subglsm.a A=LSSumH
Assertion subglsm SSubGrpGTSUST˙U=TAU

Proof

Step Hyp Ref Expression
1 subglsm.h H=G𝑠S
2 subglsm.s ˙=LSSumG
3 subglsm.a A=LSSumH
4 simp11 SSubGrpGTSUSxTyUSSubGrpG
5 eqid +G=+G
6 1 5 ressplusg SSubGrpG+G=+H
7 4 6 syl SSubGrpGTSUSxTyU+G=+H
8 7 oveqd SSubGrpGTSUSxTyUx+Gy=x+Hy
9 8 mpoeq3dva SSubGrpGTSUSxT,yUx+Gy=xT,yUx+Hy
10 9 rneqd SSubGrpGTSUSranxT,yUx+Gy=ranxT,yUx+Hy
11 subgrcl SSubGrpGGGrp
12 11 3ad2ant1 SSubGrpGTSUSGGrp
13 simp2 SSubGrpGTSUSTS
14 eqid BaseG=BaseG
15 14 subgss SSubGrpGSBaseG
16 15 3ad2ant1 SSubGrpGTSUSSBaseG
17 13 16 sstrd SSubGrpGTSUSTBaseG
18 simp3 SSubGrpGTSUSUS
19 18 16 sstrd SSubGrpGTSUSUBaseG
20 14 5 2 lsmvalx GGrpTBaseGUBaseGT˙U=ranxT,yUx+Gy
21 12 17 19 20 syl3anc SSubGrpGTSUST˙U=ranxT,yUx+Gy
22 1 subggrp SSubGrpGHGrp
23 22 3ad2ant1 SSubGrpGTSUSHGrp
24 1 subgbas SSubGrpGS=BaseH
25 24 3ad2ant1 SSubGrpGTSUSS=BaseH
26 13 25 sseqtrd SSubGrpGTSUSTBaseH
27 18 25 sseqtrd SSubGrpGTSUSUBaseH
28 eqid BaseH=BaseH
29 eqid +H=+H
30 28 29 3 lsmvalx HGrpTBaseHUBaseHTAU=ranxT,yUx+Hy
31 23 26 27 30 syl3anc SSubGrpGTSUSTAU=ranxT,yUx+Hy
32 10 21 31 3eqtr4d SSubGrpGTSUST˙U=TAU