Metamath Proof Explorer


Theorem subglsm

Description: The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses subglsm.h 𝐻 = ( 𝐺s 𝑆 )
subglsm.s = ( LSSum ‘ 𝐺 )
subglsm.a 𝐴 = ( LSSum ‘ 𝐻 )
Assertion subglsm ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → ( 𝑇 𝑈 ) = ( 𝑇 𝐴 𝑈 ) )

Proof

Step Hyp Ref Expression
1 subglsm.h 𝐻 = ( 𝐺s 𝑆 )
2 subglsm.s = ( LSSum ‘ 𝐺 )
3 subglsm.a 𝐴 = ( LSSum ‘ 𝐻 )
4 simp11 ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) ∧ 𝑥𝑇𝑦𝑈 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
5 eqid ( +g𝐺 ) = ( +g𝐺 )
6 1 5 ressplusg ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g𝐺 ) = ( +g𝐻 ) )
7 4 6 syl ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) ∧ 𝑥𝑇𝑦𝑈 ) → ( +g𝐺 ) = ( +g𝐻 ) )
8 7 oveqd ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) ∧ 𝑥𝑇𝑦𝑈 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑥 ( +g𝐻 ) 𝑦 ) )
9 8 mpoeq3dva ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) = ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐻 ) 𝑦 ) ) )
10 9 rneqd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) = ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐻 ) 𝑦 ) ) )
11 subgrcl ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
12 11 3ad2ant1 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → 𝐺 ∈ Grp )
13 simp2 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → 𝑇𝑆 )
14 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
15 14 subgss ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) )
16 15 3ad2ant1 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) )
17 13 16 sstrd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) )
18 simp3 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → 𝑈𝑆 )
19 18 16 sstrd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) )
20 14 5 2 lsmvalx ( ( 𝐺 ∈ Grp ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑇 𝑈 ) = ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) )
21 12 17 19 20 syl3anc ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → ( 𝑇 𝑈 ) = ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) )
22 1 subggrp ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp )
23 22 3ad2ant1 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → 𝐻 ∈ Grp )
24 1 subgbas ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) )
25 24 3ad2ant1 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → 𝑆 = ( Base ‘ 𝐻 ) )
26 13 25 sseqtrd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → 𝑇 ⊆ ( Base ‘ 𝐻 ) )
27 18 25 sseqtrd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝐻 ) )
28 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
29 eqid ( +g𝐻 ) = ( +g𝐻 )
30 28 29 3 lsmvalx ( ( 𝐻 ∈ Grp ∧ 𝑇 ⊆ ( Base ‘ 𝐻 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐻 ) ) → ( 𝑇 𝐴 𝑈 ) = ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐻 ) 𝑦 ) ) )
31 23 26 27 30 syl3anc ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → ( 𝑇 𝐴 𝑈 ) = ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐻 ) 𝑦 ) ) )
32 10 21 31 3eqtr4d ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇𝑆𝑈𝑆 ) → ( 𝑇 𝑈 ) = ( 𝑇 𝐴 𝑈 ) )