| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subglsm.h |
|- H = ( G |`s S ) |
| 2 |
|
subglsm.s |
|- .(+) = ( LSSum ` G ) |
| 3 |
|
subglsm.a |
|- A = ( LSSum ` H ) |
| 4 |
|
simp11 |
|- ( ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) /\ x e. T /\ y e. U ) -> S e. ( SubGrp ` G ) ) |
| 5 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 6 |
1 5
|
ressplusg |
|- ( S e. ( SubGrp ` G ) -> ( +g ` G ) = ( +g ` H ) ) |
| 7 |
4 6
|
syl |
|- ( ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) /\ x e. T /\ y e. U ) -> ( +g ` G ) = ( +g ` H ) ) |
| 8 |
7
|
oveqd |
|- ( ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) /\ x e. T /\ y e. U ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
| 9 |
8
|
mpoeq3dva |
|- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> ( x e. T , y e. U |-> ( x ( +g ` G ) y ) ) = ( x e. T , y e. U |-> ( x ( +g ` H ) y ) ) ) |
| 10 |
9
|
rneqd |
|- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> ran ( x e. T , y e. U |-> ( x ( +g ` G ) y ) ) = ran ( x e. T , y e. U |-> ( x ( +g ` H ) y ) ) ) |
| 11 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
| 12 |
11
|
3ad2ant1 |
|- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> G e. Grp ) |
| 13 |
|
simp2 |
|- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> T C_ S ) |
| 14 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 15 |
14
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> S C_ ( Base ` G ) ) |
| 17 |
13 16
|
sstrd |
|- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> T C_ ( Base ` G ) ) |
| 18 |
|
simp3 |
|- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> U C_ S ) |
| 19 |
18 16
|
sstrd |
|- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> U C_ ( Base ` G ) ) |
| 20 |
14 5 2
|
lsmvalx |
|- ( ( G e. Grp /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( T .(+) U ) = ran ( x e. T , y e. U |-> ( x ( +g ` G ) y ) ) ) |
| 21 |
12 17 19 20
|
syl3anc |
|- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> ( T .(+) U ) = ran ( x e. T , y e. U |-> ( x ( +g ` G ) y ) ) ) |
| 22 |
1
|
subggrp |
|- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
| 23 |
22
|
3ad2ant1 |
|- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> H e. Grp ) |
| 24 |
1
|
subgbas |
|- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
| 25 |
24
|
3ad2ant1 |
|- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> S = ( Base ` H ) ) |
| 26 |
13 25
|
sseqtrd |
|- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> T C_ ( Base ` H ) ) |
| 27 |
18 25
|
sseqtrd |
|- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> U C_ ( Base ` H ) ) |
| 28 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 29 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
| 30 |
28 29 3
|
lsmvalx |
|- ( ( H e. Grp /\ T C_ ( Base ` H ) /\ U C_ ( Base ` H ) ) -> ( T A U ) = ran ( x e. T , y e. U |-> ( x ( +g ` H ) y ) ) ) |
| 31 |
23 26 27 30
|
syl3anc |
|- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> ( T A U ) = ran ( x e. T , y e. U |-> ( x ( +g ` H ) y ) ) ) |
| 32 |
10 21 31
|
3eqtr4d |
|- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> ( T .(+) U ) = ( T A U ) ) |