Metamath Proof Explorer


Theorem 0subg

Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014)

Ref Expression
Hypothesis 0subg.z 0 ˙ = 0 G
Assertion 0subg G Grp 0 ˙ SubGrp G

Proof

Step Hyp Ref Expression
1 0subg.z 0 ˙ = 0 G
2 eqid Base G = Base G
3 2 1 grpidcl G Grp 0 ˙ Base G
4 3 snssd G Grp 0 ˙ Base G
5 1 fvexi 0 ˙ V
6 5 snnz 0 ˙
7 6 a1i G Grp 0 ˙
8 eqid + G = + G
9 2 8 1 grplid G Grp 0 ˙ Base G 0 ˙ + G 0 ˙ = 0 ˙
10 3 9 mpdan G Grp 0 ˙ + G 0 ˙ = 0 ˙
11 ovex 0 ˙ + G 0 ˙ V
12 11 elsn 0 ˙ + G 0 ˙ 0 ˙ 0 ˙ + G 0 ˙ = 0 ˙
13 10 12 sylibr G Grp 0 ˙ + G 0 ˙ 0 ˙
14 eqid inv g G = inv g G
15 1 14 grpinvid G Grp inv g G 0 ˙ = 0 ˙
16 fvex inv g G 0 ˙ V
17 16 elsn inv g G 0 ˙ 0 ˙ inv g G 0 ˙ = 0 ˙
18 15 17 sylibr G Grp inv g G 0 ˙ 0 ˙
19 oveq1 a = 0 ˙ a + G b = 0 ˙ + G b
20 19 eleq1d a = 0 ˙ a + G b 0 ˙ 0 ˙ + G b 0 ˙
21 20 ralbidv a = 0 ˙ b 0 ˙ a + G b 0 ˙ b 0 ˙ 0 ˙ + G b 0 ˙
22 oveq2 b = 0 ˙ 0 ˙ + G b = 0 ˙ + G 0 ˙
23 22 eleq1d b = 0 ˙ 0 ˙ + G b 0 ˙ 0 ˙ + G 0 ˙ 0 ˙
24 5 23 ralsn b 0 ˙ 0 ˙ + G b 0 ˙ 0 ˙ + G 0 ˙ 0 ˙
25 21 24 bitrdi a = 0 ˙ b 0 ˙ a + G b 0 ˙ 0 ˙ + G 0 ˙ 0 ˙
26 fveq2 a = 0 ˙ inv g G a = inv g G 0 ˙
27 26 eleq1d a = 0 ˙ inv g G a 0 ˙ inv g G 0 ˙ 0 ˙
28 25 27 anbi12d a = 0 ˙ b 0 ˙ a + G b 0 ˙ inv g G a 0 ˙ 0 ˙ + G 0 ˙ 0 ˙ inv g G 0 ˙ 0 ˙
29 5 28 ralsn a 0 ˙ b 0 ˙ a + G b 0 ˙ inv g G a 0 ˙ 0 ˙ + G 0 ˙ 0 ˙ inv g G 0 ˙ 0 ˙
30 13 18 29 sylanbrc G Grp a 0 ˙ b 0 ˙ a + G b 0 ˙ inv g G a 0 ˙
31 2 8 14 issubg2 G Grp 0 ˙ SubGrp G 0 ˙ Base G 0 ˙ a 0 ˙ b 0 ˙ a + G b 0 ˙ inv g G a 0 ˙
32 4 7 30 31 mpbir3and G Grp 0 ˙ SubGrp G