Step |
Hyp |
Ref |
Expression |
1 |
|
0subg.z |
|- .0. = ( 0g ` G ) |
2 |
|
grpmnd |
|- ( G e. Grp -> G e. Mnd ) |
3 |
1
|
0subm |
|- ( G e. Mnd -> { .0. } e. ( SubMnd ` G ) ) |
4 |
2 3
|
syl |
|- ( G e. Grp -> { .0. } e. ( SubMnd ` G ) ) |
5 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
6 |
1 5
|
grpinvid |
|- ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) |
7 |
|
fvex |
|- ( ( invg ` G ) ` .0. ) e. _V |
8 |
7
|
elsn |
|- ( ( ( invg ` G ) ` .0. ) e. { .0. } <-> ( ( invg ` G ) ` .0. ) = .0. ) |
9 |
6 8
|
sylibr |
|- ( G e. Grp -> ( ( invg ` G ) ` .0. ) e. { .0. } ) |
10 |
1
|
fvexi |
|- .0. e. _V |
11 |
|
fveq2 |
|- ( a = .0. -> ( ( invg ` G ) ` a ) = ( ( invg ` G ) ` .0. ) ) |
12 |
11
|
eleq1d |
|- ( a = .0. -> ( ( ( invg ` G ) ` a ) e. { .0. } <-> ( ( invg ` G ) ` .0. ) e. { .0. } ) ) |
13 |
10 12
|
ralsn |
|- ( A. a e. { .0. } ( ( invg ` G ) ` a ) e. { .0. } <-> ( ( invg ` G ) ` .0. ) e. { .0. } ) |
14 |
9 13
|
sylibr |
|- ( G e. Grp -> A. a e. { .0. } ( ( invg ` G ) ` a ) e. { .0. } ) |
15 |
5
|
issubg3 |
|- ( G e. Grp -> ( { .0. } e. ( SubGrp ` G ) <-> ( { .0. } e. ( SubMnd ` G ) /\ A. a e. { .0. } ( ( invg ` G ) ` a ) e. { .0. } ) ) ) |
16 |
4 14 15
|
mpbir2and |
|- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |