| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0subg.z |
|- .0. = ( 0g ` G ) |
| 2 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 3 |
2 1
|
grpidcl |
|- ( G e. Grp -> .0. e. ( Base ` G ) ) |
| 4 |
3
|
snssd |
|- ( G e. Grp -> { .0. } C_ ( Base ` G ) ) |
| 5 |
1
|
fvexi |
|- .0. e. _V |
| 6 |
5
|
snnz |
|- { .0. } =/= (/) |
| 7 |
6
|
a1i |
|- ( G e. Grp -> { .0. } =/= (/) ) |
| 8 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 9 |
2 8 1
|
grplid |
|- ( ( G e. Grp /\ .0. e. ( Base ` G ) ) -> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 10 |
3 9
|
mpdan |
|- ( G e. Grp -> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 11 |
|
ovex |
|- ( .0. ( +g ` G ) .0. ) e. _V |
| 12 |
11
|
elsn |
|- ( ( .0. ( +g ` G ) .0. ) e. { .0. } <-> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 13 |
10 12
|
sylibr |
|- ( G e. Grp -> ( .0. ( +g ` G ) .0. ) e. { .0. } ) |
| 14 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 15 |
1 14
|
grpinvid |
|- ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 16 |
|
fvex |
|- ( ( invg ` G ) ` .0. ) e. _V |
| 17 |
16
|
elsn |
|- ( ( ( invg ` G ) ` .0. ) e. { .0. } <-> ( ( invg ` G ) ` .0. ) = .0. ) |
| 18 |
15 17
|
sylibr |
|- ( G e. Grp -> ( ( invg ` G ) ` .0. ) e. { .0. } ) |
| 19 |
|
oveq1 |
|- ( a = .0. -> ( a ( +g ` G ) b ) = ( .0. ( +g ` G ) b ) ) |
| 20 |
19
|
eleq1d |
|- ( a = .0. -> ( ( a ( +g ` G ) b ) e. { .0. } <-> ( .0. ( +g ` G ) b ) e. { .0. } ) ) |
| 21 |
20
|
ralbidv |
|- ( a = .0. -> ( A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } <-> A. b e. { .0. } ( .0. ( +g ` G ) b ) e. { .0. } ) ) |
| 22 |
|
oveq2 |
|- ( b = .0. -> ( .0. ( +g ` G ) b ) = ( .0. ( +g ` G ) .0. ) ) |
| 23 |
22
|
eleq1d |
|- ( b = .0. -> ( ( .0. ( +g ` G ) b ) e. { .0. } <-> ( .0. ( +g ` G ) .0. ) e. { .0. } ) ) |
| 24 |
5 23
|
ralsn |
|- ( A. b e. { .0. } ( .0. ( +g ` G ) b ) e. { .0. } <-> ( .0. ( +g ` G ) .0. ) e. { .0. } ) |
| 25 |
21 24
|
bitrdi |
|- ( a = .0. -> ( A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } <-> ( .0. ( +g ` G ) .0. ) e. { .0. } ) ) |
| 26 |
|
fveq2 |
|- ( a = .0. -> ( ( invg ` G ) ` a ) = ( ( invg ` G ) ` .0. ) ) |
| 27 |
26
|
eleq1d |
|- ( a = .0. -> ( ( ( invg ` G ) ` a ) e. { .0. } <-> ( ( invg ` G ) ` .0. ) e. { .0. } ) ) |
| 28 |
25 27
|
anbi12d |
|- ( a = .0. -> ( ( A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } /\ ( ( invg ` G ) ` a ) e. { .0. } ) <-> ( ( .0. ( +g ` G ) .0. ) e. { .0. } /\ ( ( invg ` G ) ` .0. ) e. { .0. } ) ) ) |
| 29 |
5 28
|
ralsn |
|- ( A. a e. { .0. } ( A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } /\ ( ( invg ` G ) ` a ) e. { .0. } ) <-> ( ( .0. ( +g ` G ) .0. ) e. { .0. } /\ ( ( invg ` G ) ` .0. ) e. { .0. } ) ) |
| 30 |
13 18 29
|
sylanbrc |
|- ( G e. Grp -> A. a e. { .0. } ( A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } /\ ( ( invg ` G ) ` a ) e. { .0. } ) ) |
| 31 |
2 8 14
|
issubg2 |
|- ( G e. Grp -> ( { .0. } e. ( SubGrp ` G ) <-> ( { .0. } C_ ( Base ` G ) /\ { .0. } =/= (/) /\ A. a e. { .0. } ( A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } /\ ( ( invg ` G ) ` a ) e. { .0. } ) ) ) ) |
| 32 |
4 7 30 31
|
mpbir3and |
|- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |