Metamath Proof Explorer


Theorem trivsubgd

Description: The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses trivsubgd.1
|- B = ( Base ` G )
trivsubgd.2
|- .0. = ( 0g ` G )
trivsubgd.3
|- ( ph -> G e. Grp )
trivsubgd.4
|- ( ph -> B = { .0. } )
trivsubgd.5
|- ( ph -> A e. ( SubGrp ` G ) )
Assertion trivsubgd
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 trivsubgd.1
 |-  B = ( Base ` G )
2 trivsubgd.2
 |-  .0. = ( 0g ` G )
3 trivsubgd.3
 |-  ( ph -> G e. Grp )
4 trivsubgd.4
 |-  ( ph -> B = { .0. } )
5 trivsubgd.5
 |-  ( ph -> A e. ( SubGrp ` G ) )
6 1 subgss
 |-  ( A e. ( SubGrp ` G ) -> A C_ B )
7 5 6 syl
 |-  ( ph -> A C_ B )
8 7 4 sseqtrd
 |-  ( ph -> A C_ { .0. } )
9 2 subg0cl
 |-  ( A e. ( SubGrp ` G ) -> .0. e. A )
10 5 9 syl
 |-  ( ph -> .0. e. A )
11 10 snssd
 |-  ( ph -> { .0. } C_ A )
12 8 11 eqssd
 |-  ( ph -> A = { .0. } )
13 12 4 eqtr4d
 |-  ( ph -> A = B )