| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trivsubgsnd.1 |
|- B = ( Base ` G ) |
| 2 |
|
trivsubgsnd.2 |
|- .0. = ( 0g ` G ) |
| 3 |
|
trivsubgsnd.3 |
|- ( ph -> G e. Grp ) |
| 4 |
|
trivsubgsnd.4 |
|- ( ph -> B = { .0. } ) |
| 5 |
3
|
adantr |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> G e. Grp ) |
| 6 |
4
|
adantr |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> B = { .0. } ) |
| 7 |
|
simpr |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> x e. ( SubGrp ` G ) ) |
| 8 |
1 2 5 6 7
|
trivsubgd |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> x = B ) |
| 9 |
|
velsn |
|- ( x e. { B } <-> x = B ) |
| 10 |
8 9
|
sylibr |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> x e. { B } ) |
| 11 |
10
|
ex |
|- ( ph -> ( x e. ( SubGrp ` G ) -> x e. { B } ) ) |
| 12 |
11
|
ssrdv |
|- ( ph -> ( SubGrp ` G ) C_ { B } ) |
| 13 |
1
|
subgid |
|- ( G e. Grp -> B e. ( SubGrp ` G ) ) |
| 14 |
3 13
|
syl |
|- ( ph -> B e. ( SubGrp ` G ) ) |
| 15 |
14
|
snssd |
|- ( ph -> { B } C_ ( SubGrp ` G ) ) |
| 16 |
12 15
|
eqssd |
|- ( ph -> ( SubGrp ` G ) = { B } ) |