Metamath Proof Explorer


Theorem subgid

Description: A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypothesis issubg.b
|- B = ( Base ` G )
Assertion subgid
|- ( G e. Grp -> B e. ( SubGrp ` G ) )

Proof

Step Hyp Ref Expression
1 issubg.b
 |-  B = ( Base ` G )
2 id
 |-  ( G e. Grp -> G e. Grp )
3 ssidd
 |-  ( G e. Grp -> B C_ B )
4 1 ressid
 |-  ( G e. Grp -> ( G |`s B ) = G )
5 4 2 eqeltrd
 |-  ( G e. Grp -> ( G |`s B ) e. Grp )
6 1 issubg
 |-  ( B e. ( SubGrp ` G ) <-> ( G e. Grp /\ B C_ B /\ ( G |`s B ) e. Grp ) )
7 2 3 5 6 syl3anbrc
 |-  ( G e. Grp -> B e. ( SubGrp ` G ) )