Metamath Proof Explorer


Theorem trivsubgd

Description: The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses trivsubgd.1 B=BaseG
trivsubgd.2 0˙=0G
trivsubgd.3 φGGrp
trivsubgd.4 φB=0˙
trivsubgd.5 φASubGrpG
Assertion trivsubgd φA=B

Proof

Step Hyp Ref Expression
1 trivsubgd.1 B=BaseG
2 trivsubgd.2 0˙=0G
3 trivsubgd.3 φGGrp
4 trivsubgd.4 φB=0˙
5 trivsubgd.5 φASubGrpG
6 1 subgss ASubGrpGAB
7 5 6 syl φAB
8 7 4 sseqtrd φA0˙
9 2 subg0cl ASubGrpG0˙A
10 5 9 syl φ0˙A
11 10 snssd φ0˙A
12 8 11 eqssd φA=0˙
13 12 4 eqtr4d φA=B