Metamath Proof Explorer


Theorem trivsubgd

Description: The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses trivsubgd.1 B = Base G
trivsubgd.2 0 ˙ = 0 G
trivsubgd.3 φ G Grp
trivsubgd.4 φ B = 0 ˙
trivsubgd.5 φ A SubGrp G
Assertion trivsubgd φ A = B

Proof

Step Hyp Ref Expression
1 trivsubgd.1 B = Base G
2 trivsubgd.2 0 ˙ = 0 G
3 trivsubgd.3 φ G Grp
4 trivsubgd.4 φ B = 0 ˙
5 trivsubgd.5 φ A SubGrp G
6 1 subgss A SubGrp G A B
7 5 6 syl φ A B
8 7 4 sseqtrd φ A 0 ˙
9 2 subg0cl A SubGrp G 0 ˙ A
10 5 9 syl φ 0 ˙ A
11 10 snssd φ 0 ˙ A
12 8 11 eqssd φ A = 0 ˙
13 12 4 eqtr4d φ A = B