Metamath Proof Explorer


Theorem lspsnel6

Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014) (Revised by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses lspsnel5.v V=BaseW
lspsnel5.s S=LSubSpW
lspsnel5.n N=LSpanW
lspsnel5.w φWLMod
lspsnel5.a φUS
Assertion lspsnel6 φXUXVNXU

Proof

Step Hyp Ref Expression
1 lspsnel5.v V=BaseW
2 lspsnel5.s S=LSubSpW
3 lspsnel5.n N=LSpanW
4 lspsnel5.w φWLMod
5 lspsnel5.a φUS
6 1 2 lssel USXUXV
7 5 6 sylan φXUXV
8 4 adantr φXUWLMod
9 5 adantr φXUUS
10 simpr φXUXU
11 2 3 lspsnss WLModUSXUNXU
12 8 9 10 11 syl3anc φXUNXU
13 7 12 jca φXUXVNXU
14 1 3 lspsnid WLModXVXNX
15 4 14 sylan φXVXNX
16 ssel NXUXNXXU
17 15 16 syl5com φXVNXUXU
18 17 impr φXVNXUXU
19 13 18 impbida φXUXVNXU