Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Subspaces and spans in a left module
lspsnss
Metamath Proof Explorer
Description: The span of the singleton of a subspace member is included in the
subspace. ( spansnss analog.) (Contributed by NM , 9-Apr-2014)
(Revised by Mario Carneiro , 4-Sep-2014)
Ref
Expression
Hypotheses
lspsnss.s
⊢ S = LSubSp ⁡ W
lspsnss.n
⊢ N = LSpan ⁡ W
Assertion
lspsnss
⊢ W ∈ LMod ∧ U ∈ S ∧ X ∈ U → N ⁡ X ⊆ U
Proof
Step
Hyp
Ref
Expression
1
lspsnss.s
⊢ S = LSubSp ⁡ W
2
lspsnss.n
⊢ N = LSpan ⁡ W
3
snssi
⊢ X ∈ U → X ⊆ U
4
1 2
lspssp
⊢ W ∈ LMod ∧ U ∈ S ∧ X ⊆ U → N ⁡ X ⊆ U
5
3 4
syl3an3
⊢ W ∈ LMod ∧ U ∈ S ∧ X ∈ U → N ⁡ X ⊆ U