Description: The span of the singleton of a subspace member is included in the subspace. ( spansnss analog.) (Contributed by NM, 9-Apr-2014) (Revised by Mario Carneiro, 4-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnss.s | |- S = ( LSubSp ` W ) |
|
| lspsnss.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspsnss | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( N ` { X } ) C_ U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnss.s | |- S = ( LSubSp ` W ) |
|
| 2 | lspsnss.n | |- N = ( LSpan ` W ) |
|
| 3 | snssi | |- ( X e. U -> { X } C_ U ) |
|
| 4 | 1 2 | lspssp | |- ( ( W e. LMod /\ U e. S /\ { X } C_ U ) -> ( N ` { X } ) C_ U ) |
| 5 | 3 4 | syl3an3 | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( N ` { X } ) C_ U ) |