Description: The span of the singleton of a subspace member is included in the subspace. ( spansnss analog.) (Contributed by NM, 9-Apr-2014) (Revised by Mario Carneiro, 4-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspsnss.s | |- S = ( LSubSp ` W ) |
|
lspsnss.n | |- N = ( LSpan ` W ) |
||
Assertion | lspsnss | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( N ` { X } ) C_ U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnss.s | |- S = ( LSubSp ` W ) |
|
2 | lspsnss.n | |- N = ( LSpan ` W ) |
|
3 | snssi | |- ( X e. U -> { X } C_ U ) |
|
4 | 1 2 | lspssp | |- ( ( W e. LMod /\ U e. S /\ { X } C_ U ) -> ( N ` { X } ) C_ U ) |
5 | 3 4 | syl3an3 | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( N ` { X } ) C_ U ) |