Metamath Proof Explorer


Theorem lspsnss

Description: The span of the singleton of a subspace member is included in the subspace. ( spansnss analog.) (Contributed by NM, 9-Apr-2014) (Revised by Mario Carneiro, 4-Sep-2014)

Ref Expression
Hypotheses lspsnss.s
|- S = ( LSubSp ` W )
lspsnss.n
|- N = ( LSpan ` W )
Assertion lspsnss
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( N ` { X } ) C_ U )

Proof

Step Hyp Ref Expression
1 lspsnss.s
 |-  S = ( LSubSp ` W )
2 lspsnss.n
 |-  N = ( LSpan ` W )
3 snssi
 |-  ( X e. U -> { X } C_ U )
4 1 2 lspssp
 |-  ( ( W e. LMod /\ U e. S /\ { X } C_ U ) -> ( N ` { X } ) C_ U )
5 3 4 syl3an3
 |-  ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( N ` { X } ) C_ U )