| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihprrn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dihprrn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dihprrn.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
dihprrn.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 5 |
|
dihprrn.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
dihprrn.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 7 |
|
dihprrn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 8 |
|
dihprrn.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 9 |
|
prcom |
⊢ { 𝑋 , 𝑌 } = { 𝑌 , 𝑋 } |
| 10 |
|
preq2 |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → { 𝑌 , 𝑋 } = { 𝑌 , ( 0g ‘ 𝑈 ) } ) |
| 11 |
9 10
|
eqtrid |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → { 𝑋 , 𝑌 } = { 𝑌 , ( 0g ‘ 𝑈 ) } ) |
| 12 |
11
|
fveq2d |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑌 , ( 0g ‘ 𝑈 ) } ) ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 14 |
1 2 6
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 15 |
3 13 4 14 8
|
lsppr0 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , ( 0g ‘ 𝑈 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 16 |
12 15
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 17 |
1 2 3 4 5
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ran 𝐼 ) |
| 18 |
6 8 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ran 𝐼 ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ran 𝐼 ) |
| 20 |
16 19
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ran 𝐼 ) |
| 21 |
|
preq2 |
⊢ ( 𝑌 = ( 0g ‘ 𝑈 ) → { 𝑋 , 𝑌 } = { 𝑋 , ( 0g ‘ 𝑈 ) } ) |
| 22 |
21
|
fveq2d |
⊢ ( 𝑌 = ( 0g ‘ 𝑈 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑋 , ( 0g ‘ 𝑈 ) } ) ) |
| 23 |
3 13 4 14 7
|
lsppr0 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , ( 0g ‘ 𝑈 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 24 |
22 23
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 25 |
1 2 3 4 5
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
| 26 |
6 7 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
| 28 |
24 27
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ran 𝐼 ) |
| 29 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 30 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑋 ∈ 𝑉 ) |
| 31 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑌 ∈ 𝑉 ) |
| 32 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑋 ≠ ( 0g ‘ 𝑈 ) ) |
| 33 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑌 ≠ ( 0g ‘ 𝑈 ) ) |
| 34 |
1 2 3 4 5 29 30 31 13 32 33
|
dihprrnlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ran 𝐼 ) |
| 35 |
20 28 34
|
pm2.61da2ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ran 𝐼 ) |