Step |
Hyp |
Ref |
Expression |
1 |
|
dihprrn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dihprrn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dihprrn.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
dihprrn.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
dihprrn.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dihprrn.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
dihprrn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
8 |
|
dihprrn.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
9 |
|
prcom |
⊢ { 𝑋 , 𝑌 } = { 𝑌 , 𝑋 } |
10 |
|
preq2 |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → { 𝑌 , 𝑋 } = { 𝑌 , ( 0g ‘ 𝑈 ) } ) |
11 |
9 10
|
syl5eq |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → { 𝑋 , 𝑌 } = { 𝑌 , ( 0g ‘ 𝑈 ) } ) |
12 |
11
|
fveq2d |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑌 , ( 0g ‘ 𝑈 ) } ) ) |
13 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
14 |
1 2 6
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
15 |
3 13 4 14 8
|
lsppr0 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , ( 0g ‘ 𝑈 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
16 |
12 15
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
17 |
1 2 3 4 5
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ran 𝐼 ) |
18 |
6 8 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ran 𝐼 ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ran 𝐼 ) |
20 |
16 19
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ran 𝐼 ) |
21 |
|
preq2 |
⊢ ( 𝑌 = ( 0g ‘ 𝑈 ) → { 𝑋 , 𝑌 } = { 𝑋 , ( 0g ‘ 𝑈 ) } ) |
22 |
21
|
fveq2d |
⊢ ( 𝑌 = ( 0g ‘ 𝑈 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑋 , ( 0g ‘ 𝑈 ) } ) ) |
23 |
3 13 4 14 7
|
lsppr0 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , ( 0g ‘ 𝑈 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
24 |
22 23
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
25 |
1 2 3 4 5
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
26 |
6 7 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
28 |
24 27
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ran 𝐼 ) |
29 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
30 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑋 ∈ 𝑉 ) |
31 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑌 ∈ 𝑉 ) |
32 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑋 ≠ ( 0g ‘ 𝑈 ) ) |
33 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑌 ≠ ( 0g ‘ 𝑈 ) ) |
34 |
1 2 3 4 5 29 30 31 13 32 33
|
dihprrnlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ran 𝐼 ) |
35 |
20 28 34
|
pm2.61da2ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ran 𝐼 ) |