Step |
Hyp |
Ref |
Expression |
1 |
|
dihprrn.h |
|- H = ( LHyp ` K ) |
2 |
|
dihprrn.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
dihprrn.v |
|- V = ( Base ` U ) |
4 |
|
dihprrn.n |
|- N = ( LSpan ` U ) |
5 |
|
dihprrn.i |
|- I = ( ( DIsoH ` K ) ` W ) |
6 |
|
dihprrn.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
dihprrn.x |
|- ( ph -> X e. V ) |
8 |
|
dihprrn.y |
|- ( ph -> Y e. V ) |
9 |
|
prcom |
|- { X , Y } = { Y , X } |
10 |
|
preq2 |
|- ( X = ( 0g ` U ) -> { Y , X } = { Y , ( 0g ` U ) } ) |
11 |
9 10
|
syl5eq |
|- ( X = ( 0g ` U ) -> { X , Y } = { Y , ( 0g ` U ) } ) |
12 |
11
|
fveq2d |
|- ( X = ( 0g ` U ) -> ( N ` { X , Y } ) = ( N ` { Y , ( 0g ` U ) } ) ) |
13 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
14 |
1 2 6
|
dvhlmod |
|- ( ph -> U e. LMod ) |
15 |
3 13 4 14 8
|
lsppr0 |
|- ( ph -> ( N ` { Y , ( 0g ` U ) } ) = ( N ` { Y } ) ) |
16 |
12 15
|
sylan9eqr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( N ` { X , Y } ) = ( N ` { Y } ) ) |
17 |
1 2 3 4 5
|
dihlsprn |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. V ) -> ( N ` { Y } ) e. ran I ) |
18 |
6 8 17
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ran I ) |
19 |
18
|
adantr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( N ` { Y } ) e. ran I ) |
20 |
16 19
|
eqeltrd |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( N ` { X , Y } ) e. ran I ) |
21 |
|
preq2 |
|- ( Y = ( 0g ` U ) -> { X , Y } = { X , ( 0g ` U ) } ) |
22 |
21
|
fveq2d |
|- ( Y = ( 0g ` U ) -> ( N ` { X , Y } ) = ( N ` { X , ( 0g ` U ) } ) ) |
23 |
3 13 4 14 7
|
lsppr0 |
|- ( ph -> ( N ` { X , ( 0g ` U ) } ) = ( N ` { X } ) ) |
24 |
22 23
|
sylan9eqr |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> ( N ` { X , Y } ) = ( N ` { X } ) ) |
25 |
1 2 3 4 5
|
dihlsprn |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. V ) -> ( N ` { X } ) e. ran I ) |
26 |
6 7 25
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ran I ) |
27 |
26
|
adantr |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> ( N ` { X } ) e. ran I ) |
28 |
24 27
|
eqeltrd |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> ( N ` { X , Y } ) e. ran I ) |
29 |
6
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> ( K e. HL /\ W e. H ) ) |
30 |
7
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> X e. V ) |
31 |
8
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> Y e. V ) |
32 |
|
simprl |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> X =/= ( 0g ` U ) ) |
33 |
|
simprr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> Y =/= ( 0g ` U ) ) |
34 |
1 2 3 4 5 29 30 31 13 32 33
|
dihprrnlem2 |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> ( N ` { X , Y } ) e. ran I ) |
35 |
20 28 34
|
pm2.61da2ne |
|- ( ph -> ( N ` { X , Y } ) e. ran I ) |