| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dihprrn.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | dihprrn.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | dihprrn.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | dihprrn.n |  |-  N = ( LSpan ` U ) | 
						
							| 5 |  | dihprrn.i |  |-  I = ( ( DIsoH ` K ) ` W ) | 
						
							| 6 |  | dihprrn.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 7 |  | dihprrn.x |  |-  ( ph -> X e. V ) | 
						
							| 8 |  | dihprrn.y |  |-  ( ph -> Y e. V ) | 
						
							| 9 |  | dihprrnlem2.o |  |-  .0. = ( 0g ` U ) | 
						
							| 10 |  | dihprrnlem2.xz |  |-  ( ph -> X =/= .0. ) | 
						
							| 11 |  | dihprrnlem2.yz |  |-  ( ph -> Y =/= .0. ) | 
						
							| 12 |  | df-pr |  |-  { X , Y } = ( { X } u. { Y } ) | 
						
							| 13 | 12 | fveq2i |  |-  ( N ` { X , Y } ) = ( N ` ( { X } u. { Y } ) ) | 
						
							| 14 |  | eqid |  |-  ( join ` K ) = ( join ` K ) | 
						
							| 15 |  | eqid |  |-  ( Atoms ` K ) = ( Atoms ` K ) | 
						
							| 16 |  | eqid |  |-  ( LSSum ` U ) = ( LSSum ` U ) | 
						
							| 17 | 15 1 2 3 9 4 5 | dihlspsnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ X =/= .0. ) -> ( `' I ` ( N ` { X } ) ) e. ( Atoms ` K ) ) | 
						
							| 18 | 6 7 10 17 | syl3anc |  |-  ( ph -> ( `' I ` ( N ` { X } ) ) e. ( Atoms ` K ) ) | 
						
							| 19 | 15 1 2 3 9 4 5 | dihlspsnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ Y e. V /\ Y =/= .0. ) -> ( `' I ` ( N ` { Y } ) ) e. ( Atoms ` K ) ) | 
						
							| 20 | 6 8 11 19 | syl3anc |  |-  ( ph -> ( `' I ` ( N ` { Y } ) ) e. ( Atoms ` K ) ) | 
						
							| 21 | 1 14 15 2 16 5 6 18 20 | dihjat |  |-  ( ph -> ( I ` ( ( `' I ` ( N ` { X } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) = ( ( I ` ( `' I ` ( N ` { X } ) ) ) ( LSSum ` U ) ( I ` ( `' I ` ( N ` { Y } ) ) ) ) ) | 
						
							| 22 | 1 2 3 4 5 | dihlsprn |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. V ) -> ( N ` { X } ) e. ran I ) | 
						
							| 23 | 6 7 22 | syl2anc |  |-  ( ph -> ( N ` { X } ) e. ran I ) | 
						
							| 24 | 1 5 | dihcnvid2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( N ` { X } ) e. ran I ) -> ( I ` ( `' I ` ( N ` { X } ) ) ) = ( N ` { X } ) ) | 
						
							| 25 | 6 23 24 | syl2anc |  |-  ( ph -> ( I ` ( `' I ` ( N ` { X } ) ) ) = ( N ` { X } ) ) | 
						
							| 26 | 1 2 3 4 5 | dihlsprn |  |-  ( ( ( K e. HL /\ W e. H ) /\ Y e. V ) -> ( N ` { Y } ) e. ran I ) | 
						
							| 27 | 6 8 26 | syl2anc |  |-  ( ph -> ( N ` { Y } ) e. ran I ) | 
						
							| 28 | 1 5 | dihcnvid2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( N ` { Y } ) e. ran I ) -> ( I ` ( `' I ` ( N ` { Y } ) ) ) = ( N ` { Y } ) ) | 
						
							| 29 | 6 27 28 | syl2anc |  |-  ( ph -> ( I ` ( `' I ` ( N ` { Y } ) ) ) = ( N ` { Y } ) ) | 
						
							| 30 | 25 29 | oveq12d |  |-  ( ph -> ( ( I ` ( `' I ` ( N ` { X } ) ) ) ( LSSum ` U ) ( I ` ( `' I ` ( N ` { Y } ) ) ) ) = ( ( N ` { X } ) ( LSSum ` U ) ( N ` { Y } ) ) ) | 
						
							| 31 | 1 2 6 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 32 | 7 | snssd |  |-  ( ph -> { X } C_ V ) | 
						
							| 33 | 8 | snssd |  |-  ( ph -> { Y } C_ V ) | 
						
							| 34 | 3 4 16 | lsmsp2 |  |-  ( ( U e. LMod /\ { X } C_ V /\ { Y } C_ V ) -> ( ( N ` { X } ) ( LSSum ` U ) ( N ` { Y } ) ) = ( N ` ( { X } u. { Y } ) ) ) | 
						
							| 35 | 31 32 33 34 | syl3anc |  |-  ( ph -> ( ( N ` { X } ) ( LSSum ` U ) ( N ` { Y } ) ) = ( N ` ( { X } u. { Y } ) ) ) | 
						
							| 36 | 21 30 35 | 3eqtrrd |  |-  ( ph -> ( N ` ( { X } u. { Y } ) ) = ( I ` ( ( `' I ` ( N ` { X } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) ) | 
						
							| 37 | 13 36 | eqtrid |  |-  ( ph -> ( N ` { X , Y } ) = ( I ` ( ( `' I ` ( N ` { X } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) ) | 
						
							| 38 | 6 | simpld |  |-  ( ph -> K e. HL ) | 
						
							| 39 | 38 | hllatd |  |-  ( ph -> K e. Lat ) | 
						
							| 40 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 41 | 40 1 5 | dihcnvcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( N ` { X } ) e. ran I ) -> ( `' I ` ( N ` { X } ) ) e. ( Base ` K ) ) | 
						
							| 42 | 6 23 41 | syl2anc |  |-  ( ph -> ( `' I ` ( N ` { X } ) ) e. ( Base ` K ) ) | 
						
							| 43 | 40 1 5 | dihcnvcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( N ` { Y } ) e. ran I ) -> ( `' I ` ( N ` { Y } ) ) e. ( Base ` K ) ) | 
						
							| 44 | 6 27 43 | syl2anc |  |-  ( ph -> ( `' I ` ( N ` { Y } ) ) e. ( Base ` K ) ) | 
						
							| 45 | 40 14 | latjcl |  |-  ( ( K e. Lat /\ ( `' I ` ( N ` { X } ) ) e. ( Base ` K ) /\ ( `' I ` ( N ` { Y } ) ) e. ( Base ` K ) ) -> ( ( `' I ` ( N ` { X } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) e. ( Base ` K ) ) | 
						
							| 46 | 39 42 44 45 | syl3anc |  |-  ( ph -> ( ( `' I ` ( N ` { X } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) e. ( Base ` K ) ) | 
						
							| 47 | 40 1 5 | dihcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( `' I ` ( N ` { X } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) e. ( Base ` K ) ) -> ( I ` ( ( `' I ` ( N ` { X } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) e. ran I ) | 
						
							| 48 | 6 46 47 | syl2anc |  |-  ( ph -> ( I ` ( ( `' I ` ( N ` { X } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) e. ran I ) | 
						
							| 49 | 37 48 | eqeltrd |  |-  ( ph -> ( N ` { X , Y } ) e. ran I ) |