| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dihprrn.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | dihprrn.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | dihprrn.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | dihprrn.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 5 |  | dihprrn.i | ⊢ 𝐼  =  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | dihprrn.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 7 |  | dihprrn.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 8 |  | dihprrn.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 9 |  | dihprrnlem2.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 10 |  | dihprrnlem2.xz | ⊢ ( 𝜑  →  𝑋  ≠   0  ) | 
						
							| 11 |  | dihprrnlem2.yz | ⊢ ( 𝜑  →  𝑌  ≠   0  ) | 
						
							| 12 |  | df-pr | ⊢ { 𝑋 ,  𝑌 }  =  ( { 𝑋 }  ∪  { 𝑌 } ) | 
						
							| 13 | 12 | fveq2i | ⊢ ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  =  ( 𝑁 ‘ ( { 𝑋 }  ∪  { 𝑌 } ) ) | 
						
							| 14 |  | eqid | ⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 ) | 
						
							| 15 |  | eqid | ⊢ ( Atoms ‘ 𝐾 )  =  ( Atoms ‘ 𝐾 ) | 
						
							| 16 |  | eqid | ⊢ ( LSSum ‘ 𝑈 )  =  ( LSSum ‘ 𝑈 ) | 
						
							| 17 | 15 1 2 3 9 4 5 | dihlspsnat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝑉  ∧  𝑋  ≠   0  )  →  ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) )  ∈  ( Atoms ‘ 𝐾 ) ) | 
						
							| 18 | 6 7 10 17 | syl3anc | ⊢ ( 𝜑  →  ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) )  ∈  ( Atoms ‘ 𝐾 ) ) | 
						
							| 19 | 15 1 2 3 9 4 5 | dihlspsnat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑌  ∈  𝑉  ∧  𝑌  ≠   0  )  →  ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) )  ∈  ( Atoms ‘ 𝐾 ) ) | 
						
							| 20 | 6 8 11 19 | syl3anc | ⊢ ( 𝜑  →  ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) )  ∈  ( Atoms ‘ 𝐾 ) ) | 
						
							| 21 | 1 14 15 2 16 5 6 18 20 | dihjat | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) )  =  ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ( LSSum ‘ 𝑈 ) ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) | 
						
							| 22 | 1 2 3 4 5 | dihlsprn | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ran  𝐼 ) | 
						
							| 23 | 6 7 22 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ran  𝐼 ) | 
						
							| 24 | 1 5 | dihcnvid2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑁 ‘ { 𝑋 } )  ∈  ran  𝐼 )  →  ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) )  =  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 25 | 6 23 24 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) )  =  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 26 | 1 2 3 4 5 | dihlsprn | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ran  𝐼 ) | 
						
							| 27 | 6 8 26 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ran  𝐼 ) | 
						
							| 28 | 1 5 | dihcnvid2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑁 ‘ { 𝑌 } )  ∈  ran  𝐼 )  →  ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  =  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 29 | 6 27 28 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  =  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 30 | 25 29 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ( LSSum ‘ 𝑈 ) ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) )  =  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 31 | 1 2 6 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 32 | 7 | snssd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  𝑉 ) | 
						
							| 33 | 8 | snssd | ⊢ ( 𝜑  →  { 𝑌 }  ⊆  𝑉 ) | 
						
							| 34 | 3 4 16 | lsmsp2 | ⊢ ( ( 𝑈  ∈  LMod  ∧  { 𝑋 }  ⊆  𝑉  ∧  { 𝑌 }  ⊆  𝑉 )  →  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝑁 ‘ ( { 𝑋 }  ∪  { 𝑌 } ) ) ) | 
						
							| 35 | 31 32 33 34 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝑁 ‘ ( { 𝑋 }  ∪  { 𝑌 } ) ) ) | 
						
							| 36 | 21 30 35 | 3eqtrrd | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( { 𝑋 }  ∪  { 𝑌 } ) )  =  ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) | 
						
							| 37 | 13 36 | eqtrid | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  =  ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) | 
						
							| 38 | 6 | simpld | ⊢ ( 𝜑  →  𝐾  ∈  HL ) | 
						
							| 39 | 38 | hllatd | ⊢ ( 𝜑  →  𝐾  ∈  Lat ) | 
						
							| 40 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 41 | 40 1 5 | dihcnvcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑁 ‘ { 𝑋 } )  ∈  ran  𝐼 )  →  ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 42 | 6 23 41 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 43 | 40 1 5 | dihcnvcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑁 ‘ { 𝑌 } )  ∈  ran  𝐼 )  →  ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 44 | 6 27 43 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 45 | 40 14 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 46 | 39 42 44 45 | syl3anc | ⊢ ( 𝜑  →  ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 47 | 40 1 5 | dihcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) )  ∈  ran  𝐼 ) | 
						
							| 48 | 6 46 47 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) )  ∈  ran  𝐼 ) | 
						
							| 49 | 37 48 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∈  ran  𝐼 ) |