Step |
Hyp |
Ref |
Expression |
1 |
|
dihprrn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dihprrn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dihprrn.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
dihprrn.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
dihprrn.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dihprrn.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
dihprrn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
8 |
|
dihprrn.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
9 |
|
dihprrnlem2.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
10 |
|
dihprrnlem2.xz |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
11 |
|
dihprrnlem2.yz |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
12 |
|
df-pr |
⊢ { 𝑋 , 𝑌 } = ( { 𝑋 } ∪ { 𝑌 } ) |
13 |
12
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) |
14 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
15 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
16 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
17 |
15 1 2 3 9 4 5
|
dihlspsnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( Atoms ‘ 𝐾 ) ) |
18 |
6 7 10 17
|
syl3anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( Atoms ‘ 𝐾 ) ) |
19 |
15 1 2 3 9 4 5
|
dihlspsnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( Atoms ‘ 𝐾 ) ) |
20 |
6 8 11 19
|
syl3anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( Atoms ‘ 𝐾 ) ) |
21 |
1 14 15 2 16 5 6 18 20
|
dihjat |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) = ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ( LSSum ‘ 𝑈 ) ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) |
22 |
1 2 3 4 5
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
23 |
6 7 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
24 |
1 5
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
25 |
6 23 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
26 |
1 2 3 4 5
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ran 𝐼 ) |
27 |
6 8 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ran 𝐼 ) |
28 |
1 5
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) = ( 𝑁 ‘ { 𝑌 } ) ) |
29 |
6 27 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) = ( 𝑁 ‘ { 𝑌 } ) ) |
30 |
25 29
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ( LSSum ‘ 𝑈 ) ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
31 |
1 2 6
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
32 |
7
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
33 |
8
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
34 |
3 4 16
|
lsmsp2 |
⊢ ( ( 𝑈 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ∧ { 𝑌 } ⊆ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) |
35 |
31 32 33 34
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) |
36 |
21 30 35
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) |
37 |
13 36
|
syl5eq |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) |
38 |
6
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
39 |
38
|
hllatd |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
40 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
41 |
40 1 5
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( Base ‘ 𝐾 ) ) |
42 |
6 23 41
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( Base ‘ 𝐾 ) ) |
43 |
40 1 5
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( Base ‘ 𝐾 ) ) |
44 |
6 27 43
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( Base ‘ 𝐾 ) ) |
45 |
40 14
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
46 |
39 42 44 45
|
syl3anc |
⊢ ( 𝜑 → ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
47 |
40 1 5
|
dihcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ∈ ran 𝐼 ) |
48 |
6 46 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( join ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ∈ ran 𝐼 ) |
49 |
37 48
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ran 𝐼 ) |