Metamath Proof Explorer


Theorem lsppr0

Description: The span of a vector paired with zero equals the span of the singleton of the vector. (Contributed by NM, 29-Aug-2014)

Ref Expression
Hypotheses lsppr0.v 𝑉 = ( Base ‘ 𝑊 )
lsppr0.z 0 = ( 0g𝑊 )
lsppr0.n 𝑁 = ( LSpan ‘ 𝑊 )
lsppr0.w ( 𝜑𝑊 ∈ LMod )
lsppr0.x ( 𝜑𝑋𝑉 )
Assertion lsppr0 ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 0 } ) = ( 𝑁 ‘ { 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 lsppr0.v 𝑉 = ( Base ‘ 𝑊 )
2 lsppr0.z 0 = ( 0g𝑊 )
3 lsppr0.n 𝑁 = ( LSpan ‘ 𝑊 )
4 lsppr0.w ( 𝜑𝑊 ∈ LMod )
5 lsppr0.x ( 𝜑𝑋𝑉 )
6 eqid ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 )
7 1 2 lmod0vcl ( 𝑊 ∈ LMod → 0𝑉 )
8 4 7 syl ( 𝜑0𝑉 )
9 1 3 6 4 5 8 lsmpr ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 0 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 0 } ) ) )
10 2 3 lspsn0 ( 𝑊 ∈ LMod → ( 𝑁 ‘ { 0 } ) = { 0 } )
11 4 10 syl ( 𝜑 → ( 𝑁 ‘ { 0 } ) = { 0 } )
12 11 oveq2d ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 0 } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) { 0 } ) )
13 1 3 lspsnsubg ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) )
14 4 5 13 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) )
15 2 6 lsm01 ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) { 0 } ) = ( 𝑁 ‘ { 𝑋 } ) )
16 14 15 syl ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) { 0 } ) = ( 𝑁 ‘ { 𝑋 } ) )
17 9 12 16 3eqtrd ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 0 } ) = ( 𝑁 ‘ { 𝑋 } ) )