Step |
Hyp |
Ref |
Expression |
1 |
|
lsmpr.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lsmpr.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lsmpr.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
4 |
|
lsmpr.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
5 |
|
lsmpr.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
6 |
|
lsmpr.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
7 |
5
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
8 |
6
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
9 |
1 2
|
lspun |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ∧ { 𝑌 } ⊆ 𝑉 ) → ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
10 |
4 7 8 9
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
11 |
|
df-pr |
⊢ { 𝑋 , 𝑌 } = ( { 𝑋 } ∪ { 𝑌 } ) |
12 |
11
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) |
14 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
15 |
1 14 2
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
16 |
4 5 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
17 |
1 14 2
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
18 |
4 6 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
19 |
14 2 3
|
lsmsp |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
20 |
4 16 18 19
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
21 |
10 13 20
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) |