| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsppreli.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lsppreli.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 3 |  | lsppreli.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | lsppreli.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | lsppreli.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 6 |  | lsppreli.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 7 |  | lsppreli.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 8 |  | lsppreli.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐾 ) | 
						
							| 9 |  | lsppreli.b | ⊢ ( 𝜑  →  𝐵  ∈  𝐾 ) | 
						
							| 10 |  | lsppreli.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 11 |  | lsppreli.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 12 | 1 6 | lspsnsubg | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 13 | 7 10 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 14 | 1 6 | lspsnsubg | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 15 | 7 11 14 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 16 | 1 3 4 5 6 7 8 10 | ellspsni | ⊢ ( 𝜑  →  ( 𝐴  ·  𝑋 )  ∈  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 17 | 1 3 4 5 6 7 9 11 | ellspsni | ⊢ ( 𝜑  →  ( 𝐵  ·  𝑌 )  ∈  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 18 |  | eqid | ⊢ ( LSSum ‘ 𝑊 )  =  ( LSSum ‘ 𝑊 ) | 
						
							| 19 | 2 18 | lsmelvali | ⊢ ( ( ( ( 𝑁 ‘ { 𝑋 } )  ∈  ( SubGrp ‘ 𝑊 )  ∧  ( 𝑁 ‘ { 𝑌 } )  ∈  ( SubGrp ‘ 𝑊 ) )  ∧  ( ( 𝐴  ·  𝑋 )  ∈  ( 𝑁 ‘ { 𝑋 } )  ∧  ( 𝐵  ·  𝑌 )  ∈  ( 𝑁 ‘ { 𝑌 } ) ) )  →  ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  ·  𝑌 ) )  ∈  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 20 | 13 15 16 17 19 | syl22anc | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  ·  𝑌 ) )  ∈  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 21 | 1 6 18 7 10 11 | lsmpr | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  =  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 22 | 20 21 | eleqtrrd | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  ·  𝑌 ) )  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) |