| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmelpr.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lsmelpr.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 3 |  | lsmelpr.p | ⊢  ⊕   =  ( LSSum ‘ 𝑊 ) | 
						
							| 4 |  | lsmelpr.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 5 |  | lsmelpr.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 6 |  | lsmelpr.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 7 |  | lsmelpr.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
						
							| 8 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 9 | 1 8 2 4 6 7 | lspprcl | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 ,  𝑍 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 10 | 1 8 2 4 9 5 | ellspsn5b | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑍 } )  ↔  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) ) | 
						
							| 11 | 1 2 3 4 6 7 | lsmpr | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 ,  𝑍 } )  =  ( ( 𝑁 ‘ { 𝑌 } )  ⊕  ( 𝑁 ‘ { 𝑍 } ) ) ) | 
						
							| 12 | 11 | sseq2d | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 ,  𝑍 } )  ↔  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( ( 𝑁 ‘ { 𝑌 } )  ⊕  ( 𝑁 ‘ { 𝑍 } ) ) ) ) | 
						
							| 13 | 10 12 | bitrd | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑍 } )  ↔  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( ( 𝑁 ‘ { 𝑌 } )  ⊕  ( 𝑁 ‘ { 𝑍 } ) ) ) ) |