| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmelpr.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lsmelpr.n |  |-  N = ( LSpan ` W ) | 
						
							| 3 |  | lsmelpr.p |  |-  .(+) = ( LSSum ` W ) | 
						
							| 4 |  | lsmelpr.w |  |-  ( ph -> W e. LMod ) | 
						
							| 5 |  | lsmelpr.x |  |-  ( ph -> X e. V ) | 
						
							| 6 |  | lsmelpr.y |  |-  ( ph -> Y e. V ) | 
						
							| 7 |  | lsmelpr.z |  |-  ( ph -> Z e. V ) | 
						
							| 8 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 9 | 1 8 2 4 6 7 | lspprcl |  |-  ( ph -> ( N ` { Y , Z } ) e. ( LSubSp ` W ) ) | 
						
							| 10 | 1 8 2 4 9 5 | ellspsn5b |  |-  ( ph -> ( X e. ( N ` { Y , Z } ) <-> ( N ` { X } ) C_ ( N ` { Y , Z } ) ) ) | 
						
							| 11 | 1 2 3 4 6 7 | lsmpr |  |-  ( ph -> ( N ` { Y , Z } ) = ( ( N ` { Y } ) .(+) ( N ` { Z } ) ) ) | 
						
							| 12 | 11 | sseq2d |  |-  ( ph -> ( ( N ` { X } ) C_ ( N ` { Y , Z } ) <-> ( N ` { X } ) C_ ( ( N ` { Y } ) .(+) ( N ` { Z } ) ) ) ) | 
						
							| 13 | 10 12 | bitrd |  |-  ( ph -> ( X e. ( N ` { Y , Z } ) <-> ( N ` { X } ) C_ ( ( N ` { Y } ) .(+) ( N ` { Z } ) ) ) ) |