| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmpr.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lsmpr.n |  |-  N = ( LSpan ` W ) | 
						
							| 3 |  | lsmpr.p |  |-  .(+) = ( LSSum ` W ) | 
						
							| 4 |  | lsmpr.w |  |-  ( ph -> W e. LMod ) | 
						
							| 5 |  | lsmpr.x |  |-  ( ph -> X e. V ) | 
						
							| 6 |  | lsmpr.y |  |-  ( ph -> Y e. V ) | 
						
							| 7 | 5 | snssd |  |-  ( ph -> { X } C_ V ) | 
						
							| 8 | 6 | snssd |  |-  ( ph -> { Y } C_ V ) | 
						
							| 9 | 1 2 | lspun |  |-  ( ( W e. LMod /\ { X } C_ V /\ { Y } C_ V ) -> ( N ` ( { X } u. { Y } ) ) = ( N ` ( ( N ` { X } ) u. ( N ` { Y } ) ) ) ) | 
						
							| 10 | 4 7 8 9 | syl3anc |  |-  ( ph -> ( N ` ( { X } u. { Y } ) ) = ( N ` ( ( N ` { X } ) u. ( N ` { Y } ) ) ) ) | 
						
							| 11 |  | df-pr |  |-  { X , Y } = ( { X } u. { Y } ) | 
						
							| 12 | 11 | fveq2i |  |-  ( N ` { X , Y } ) = ( N ` ( { X } u. { Y } ) ) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> ( N ` { X , Y } ) = ( N ` ( { X } u. { Y } ) ) ) | 
						
							| 14 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 15 | 1 14 2 | lspsncl |  |-  ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) | 
						
							| 16 | 4 5 15 | syl2anc |  |-  ( ph -> ( N ` { X } ) e. ( LSubSp ` W ) ) | 
						
							| 17 | 1 14 2 | lspsncl |  |-  ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) | 
						
							| 18 | 4 6 17 | syl2anc |  |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) | 
						
							| 19 | 14 2 3 | lsmsp |  |-  ( ( W e. LMod /\ ( N ` { X } ) e. ( LSubSp ` W ) /\ ( N ` { Y } ) e. ( LSubSp ` W ) ) -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) = ( N ` ( ( N ` { X } ) u. ( N ` { Y } ) ) ) ) | 
						
							| 20 | 4 16 18 19 | syl3anc |  |-  ( ph -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) = ( N ` ( ( N ` { X } ) u. ( N ` { Y } ) ) ) ) | 
						
							| 21 | 10 13 20 | 3eqtr4d |  |-  ( ph -> ( N ` { X , Y } ) = ( ( N ` { X } ) .(+) ( N ` { Y } ) ) ) |