Metamath Proof Explorer


Theorem lsppreli

Description: A vector expressed as a sum belongs to the span of its components. (Contributed by NM, 9-Apr-2015)

Ref Expression
Hypotheses lsppreli.v
|- V = ( Base ` W )
lsppreli.p
|- .+ = ( +g ` W )
lsppreli.t
|- .x. = ( .s ` W )
lsppreli.f
|- F = ( Scalar ` W )
lsppreli.k
|- K = ( Base ` F )
lsppreli.n
|- N = ( LSpan ` W )
lsppreli.w
|- ( ph -> W e. LMod )
lsppreli.a
|- ( ph -> A e. K )
lsppreli.b
|- ( ph -> B e. K )
lsppreli.x
|- ( ph -> X e. V )
lsppreli.y
|- ( ph -> Y e. V )
Assertion lsppreli
|- ( ph -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( N ` { X , Y } ) )

Proof

Step Hyp Ref Expression
1 lsppreli.v
 |-  V = ( Base ` W )
2 lsppreli.p
 |-  .+ = ( +g ` W )
3 lsppreli.t
 |-  .x. = ( .s ` W )
4 lsppreli.f
 |-  F = ( Scalar ` W )
5 lsppreli.k
 |-  K = ( Base ` F )
6 lsppreli.n
 |-  N = ( LSpan ` W )
7 lsppreli.w
 |-  ( ph -> W e. LMod )
8 lsppreli.a
 |-  ( ph -> A e. K )
9 lsppreli.b
 |-  ( ph -> B e. K )
10 lsppreli.x
 |-  ( ph -> X e. V )
11 lsppreli.y
 |-  ( ph -> Y e. V )
12 1 6 lspsnsubg
 |-  ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( SubGrp ` W ) )
13 7 10 12 syl2anc
 |-  ( ph -> ( N ` { X } ) e. ( SubGrp ` W ) )
14 1 6 lspsnsubg
 |-  ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( SubGrp ` W ) )
15 7 11 14 syl2anc
 |-  ( ph -> ( N ` { Y } ) e. ( SubGrp ` W ) )
16 1 3 4 5 6 7 8 10 lspsneli
 |-  ( ph -> ( A .x. X ) e. ( N ` { X } ) )
17 1 3 4 5 6 7 9 11 lspsneli
 |-  ( ph -> ( B .x. Y ) e. ( N ` { Y } ) )
18 eqid
 |-  ( LSSum ` W ) = ( LSSum ` W )
19 2 18 lsmelvali
 |-  ( ( ( ( N ` { X } ) e. ( SubGrp ` W ) /\ ( N ` { Y } ) e. ( SubGrp ` W ) ) /\ ( ( A .x. X ) e. ( N ` { X } ) /\ ( B .x. Y ) e. ( N ` { Y } ) ) ) -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) )
20 13 15 16 17 19 syl22anc
 |-  ( ph -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) )
21 1 6 18 7 10 11 lsmpr
 |-  ( ph -> ( N ` { X , Y } ) = ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) )
22 20 21 eleqtrrd
 |-  ( ph -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( N ` { X , Y } ) )