| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsppreli.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lsppreli.p |  |-  .+ = ( +g ` W ) | 
						
							| 3 |  | lsppreli.t |  |-  .x. = ( .s ` W ) | 
						
							| 4 |  | lsppreli.f |  |-  F = ( Scalar ` W ) | 
						
							| 5 |  | lsppreli.k |  |-  K = ( Base ` F ) | 
						
							| 6 |  | lsppreli.n |  |-  N = ( LSpan ` W ) | 
						
							| 7 |  | lsppreli.w |  |-  ( ph -> W e. LMod ) | 
						
							| 8 |  | lsppreli.a |  |-  ( ph -> A e. K ) | 
						
							| 9 |  | lsppreli.b |  |-  ( ph -> B e. K ) | 
						
							| 10 |  | lsppreli.x |  |-  ( ph -> X e. V ) | 
						
							| 11 |  | lsppreli.y |  |-  ( ph -> Y e. V ) | 
						
							| 12 | 1 6 | lspsnsubg |  |-  ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) | 
						
							| 13 | 7 10 12 | syl2anc |  |-  ( ph -> ( N ` { X } ) e. ( SubGrp ` W ) ) | 
						
							| 14 | 1 6 | lspsnsubg |  |-  ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( SubGrp ` W ) ) | 
						
							| 15 | 7 11 14 | syl2anc |  |-  ( ph -> ( N ` { Y } ) e. ( SubGrp ` W ) ) | 
						
							| 16 | 1 3 4 5 6 7 8 10 | ellspsni |  |-  ( ph -> ( A .x. X ) e. ( N ` { X } ) ) | 
						
							| 17 | 1 3 4 5 6 7 9 11 | ellspsni |  |-  ( ph -> ( B .x. Y ) e. ( N ` { Y } ) ) | 
						
							| 18 |  | eqid |  |-  ( LSSum ` W ) = ( LSSum ` W ) | 
						
							| 19 | 2 18 | lsmelvali |  |-  ( ( ( ( N ` { X } ) e. ( SubGrp ` W ) /\ ( N ` { Y } ) e. ( SubGrp ` W ) ) /\ ( ( A .x. X ) e. ( N ` { X } ) /\ ( B .x. Y ) e. ( N ` { Y } ) ) ) -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) | 
						
							| 20 | 13 15 16 17 19 | syl22anc |  |-  ( ph -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) | 
						
							| 21 | 1 6 18 7 10 11 | lsmpr |  |-  ( ph -> ( N ` { X , Y } ) = ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) | 
						
							| 22 | 20 21 | eleqtrrd |  |-  ( ph -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( N ` { X , Y } ) ) |