Step |
Hyp |
Ref |
Expression |
1 |
|
lsppreli.v |
|- V = ( Base ` W ) |
2 |
|
lsppreli.p |
|- .+ = ( +g ` W ) |
3 |
|
lsppreli.t |
|- .x. = ( .s ` W ) |
4 |
|
lsppreli.f |
|- F = ( Scalar ` W ) |
5 |
|
lsppreli.k |
|- K = ( Base ` F ) |
6 |
|
lsppreli.n |
|- N = ( LSpan ` W ) |
7 |
|
lsppreli.w |
|- ( ph -> W e. LMod ) |
8 |
|
lsppreli.a |
|- ( ph -> A e. K ) |
9 |
|
lsppreli.b |
|- ( ph -> B e. K ) |
10 |
|
lsppreli.x |
|- ( ph -> X e. V ) |
11 |
|
lsppreli.y |
|- ( ph -> Y e. V ) |
12 |
1 6
|
lspsnsubg |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
13 |
7 10 12
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
14 |
1 6
|
lspsnsubg |
|- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
15 |
7 11 14
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
16 |
1 3 4 5 6 7 8 10
|
lspsneli |
|- ( ph -> ( A .x. X ) e. ( N ` { X } ) ) |
17 |
1 3 4 5 6 7 9 11
|
lspsneli |
|- ( ph -> ( B .x. Y ) e. ( N ` { Y } ) ) |
18 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
19 |
2 18
|
lsmelvali |
|- ( ( ( ( N ` { X } ) e. ( SubGrp ` W ) /\ ( N ` { Y } ) e. ( SubGrp ` W ) ) /\ ( ( A .x. X ) e. ( N ` { X } ) /\ ( B .x. Y ) e. ( N ` { Y } ) ) ) -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
20 |
13 15 16 17 19
|
syl22anc |
|- ( ph -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
21 |
1 6 18 7 10 11
|
lsmpr |
|- ( ph -> ( N ` { X , Y } ) = ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
22 |
20 21
|
eleqtrrd |
|- ( ph -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( N ` { X , Y } ) ) |