Metamath Proof Explorer


Theorem dihjat1

Description: Subspace sum of a closed subspace and an atom. ( pmapjat1 analog.) (Contributed by NM, 1-Oct-2014)

Ref Expression
Hypotheses dihjat1.h 𝐻 = ( LHyp ‘ 𝐾 )
dihjat1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihjat1.v 𝑉 = ( Base ‘ 𝑈 )
dihjat1.p = ( LSSum ‘ 𝑈 )
dihjat1.n 𝑁 = ( LSpan ‘ 𝑈 )
dihjat1.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihjat1.j = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
dihjat1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dihjat1.x ( 𝜑𝑋 ∈ ran 𝐼 )
dihjat1.q ( 𝜑𝑇𝑉 )
Assertion dihjat1 ( 𝜑 → ( 𝑋 ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑋 ( 𝑁 ‘ { 𝑇 } ) ) )

Proof

Step Hyp Ref Expression
1 dihjat1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dihjat1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 dihjat1.v 𝑉 = ( Base ‘ 𝑈 )
4 dihjat1.p = ( LSSum ‘ 𝑈 )
5 dihjat1.n 𝑁 = ( LSpan ‘ 𝑈 )
6 dihjat1.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
7 dihjat1.j = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
8 dihjat1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 dihjat1.x ( 𝜑𝑋 ∈ ran 𝐼 )
10 dihjat1.q ( 𝜑𝑇𝑉 )
11 sneq ( 𝑇 = ( 0g𝑈 ) → { 𝑇 } = { ( 0g𝑈 ) } )
12 11 fveq2d ( 𝑇 = ( 0g𝑈 ) → ( 𝑁 ‘ { 𝑇 } ) = ( 𝑁 ‘ { ( 0g𝑈 ) } ) )
13 1 2 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
14 eqid ( 0g𝑈 ) = ( 0g𝑈 )
15 14 5 lspsn0 ( 𝑈 ∈ LMod → ( 𝑁 ‘ { ( 0g𝑈 ) } ) = { ( 0g𝑈 ) } )
16 13 15 syl ( 𝜑 → ( 𝑁 ‘ { ( 0g𝑈 ) } ) = { ( 0g𝑈 ) } )
17 12 16 sylan9eqr ( ( 𝜑𝑇 = ( 0g𝑈 ) ) → ( 𝑁 ‘ { 𝑇 } ) = { ( 0g𝑈 ) } )
18 17 oveq2d ( ( 𝜑𝑇 = ( 0g𝑈 ) ) → ( 𝑋 ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑋 { ( 0g𝑈 ) } ) )
19 1 2 14 6 7 8 9 djh01 ( 𝜑 → ( 𝑋 { ( 0g𝑈 ) } ) = 𝑋 )
20 19 adantr ( ( 𝜑𝑇 = ( 0g𝑈 ) ) → ( 𝑋 { ( 0g𝑈 ) } ) = 𝑋 )
21 17 oveq2d ( ( 𝜑𝑇 = ( 0g𝑈 ) ) → ( 𝑋 ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑋 { ( 0g𝑈 ) } ) )
22 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
23 1 2 6 22 dihrnlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ∈ ( LSubSp ‘ 𝑈 ) )
24 8 9 23 syl2anc ( 𝜑𝑋 ∈ ( LSubSp ‘ 𝑈 ) )
25 22 lsssubg ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ ( LSubSp ‘ 𝑈 ) ) → 𝑋 ∈ ( SubGrp ‘ 𝑈 ) )
26 13 24 25 syl2anc ( 𝜑𝑋 ∈ ( SubGrp ‘ 𝑈 ) )
27 14 4 lsm01 ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) → ( 𝑋 { ( 0g𝑈 ) } ) = 𝑋 )
28 26 27 syl ( 𝜑 → ( 𝑋 { ( 0g𝑈 ) } ) = 𝑋 )
29 28 adantr ( ( 𝜑𝑇 = ( 0g𝑈 ) ) → ( 𝑋 { ( 0g𝑈 ) } ) = 𝑋 )
30 21 29 eqtr2d ( ( 𝜑𝑇 = ( 0g𝑈 ) ) → 𝑋 = ( 𝑋 ( 𝑁 ‘ { 𝑇 } ) ) )
31 18 20 30 3eqtrd ( ( 𝜑𝑇 = ( 0g𝑈 ) ) → ( 𝑋 ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑋 ( 𝑁 ‘ { 𝑇 } ) ) )
32 8 adantr ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
33 9 adantr ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) → 𝑋 ∈ ran 𝐼 )
34 10 anim1i ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) → ( 𝑇𝑉𝑇 ≠ ( 0g𝑈 ) ) )
35 eldifsn ( 𝑇 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) ↔ ( 𝑇𝑉𝑇 ≠ ( 0g𝑈 ) ) )
36 34 35 sylibr ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) → 𝑇 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) )
37 1 2 3 4 5 6 7 32 33 14 36 dihjat1lem ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) → ( 𝑋 ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑋 ( 𝑁 ‘ { 𝑇 } ) ) )
38 31 37 pm2.61dane ( 𝜑 → ( 𝑋 ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑋 ( 𝑁 ‘ { 𝑇 } ) ) )