Step |
Hyp |
Ref |
Expression |
1 |
|
dihjat1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dihjat1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dihjat1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
dihjat1.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
5 |
|
dihjat1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
dihjat1.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
dihjat1.j |
⊢ ∨ = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihjat1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
dihjat1.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
10 |
|
dihjat1.q |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
11 |
|
sneq |
⊢ ( 𝑇 = ( 0g ‘ 𝑈 ) → { 𝑇 } = { ( 0g ‘ 𝑈 ) } ) |
12 |
11
|
fveq2d |
⊢ ( 𝑇 = ( 0g ‘ 𝑈 ) → ( 𝑁 ‘ { 𝑇 } ) = ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) ) |
13 |
1 2 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
15 |
14 5
|
lspsn0 |
⊢ ( 𝑈 ∈ LMod → ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝑈 ) } ) |
16 |
13 15
|
syl |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝑈 ) } ) |
17 |
12 16
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑇 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑇 } ) = { ( 0g ‘ 𝑈 ) } ) |
18 |
17
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑇 = ( 0g ‘ 𝑈 ) ) → ( 𝑋 ∨ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑋 ∨ { ( 0g ‘ 𝑈 ) } ) ) |
19 |
1 2 14 6 7 8 9
|
djh01 |
⊢ ( 𝜑 → ( 𝑋 ∨ { ( 0g ‘ 𝑈 ) } ) = 𝑋 ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 = ( 0g ‘ 𝑈 ) ) → ( 𝑋 ∨ { ( 0g ‘ 𝑈 ) } ) = 𝑋 ) |
21 |
17
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑇 = ( 0g ‘ 𝑈 ) ) → ( 𝑋 ⊕ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑋 ⊕ { ( 0g ‘ 𝑈 ) } ) ) |
22 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
23 |
1 2 6 22
|
dihrnlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ∈ ( LSubSp ‘ 𝑈 ) ) |
24 |
8 9 23
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ ( LSubSp ‘ 𝑈 ) ) |
25 |
22
|
lsssubg |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ ( LSubSp ‘ 𝑈 ) ) → 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ) |
26 |
13 24 25
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ) |
27 |
14 4
|
lsm01 |
⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) → ( 𝑋 ⊕ { ( 0g ‘ 𝑈 ) } ) = 𝑋 ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → ( 𝑋 ⊕ { ( 0g ‘ 𝑈 ) } ) = 𝑋 ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 = ( 0g ‘ 𝑈 ) ) → ( 𝑋 ⊕ { ( 0g ‘ 𝑈 ) } ) = 𝑋 ) |
30 |
21 29
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑇 = ( 0g ‘ 𝑈 ) ) → 𝑋 = ( 𝑋 ⊕ ( 𝑁 ‘ { 𝑇 } ) ) ) |
31 |
18 20 30
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑇 = ( 0g ‘ 𝑈 ) ) → ( 𝑋 ∨ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑋 ⊕ ( 𝑁 ‘ { 𝑇 } ) ) ) |
32 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
33 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) → 𝑋 ∈ ran 𝐼 ) |
34 |
10
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑇 ∈ 𝑉 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) ) |
35 |
|
eldifsn |
⊢ ( 𝑇 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ↔ ( 𝑇 ∈ 𝑉 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) ) |
36 |
34 35
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) → 𝑇 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
37 |
1 2 3 4 5 6 7 32 33 14 36
|
dihjat1lem |
⊢ ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑋 ∨ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑋 ⊕ ( 𝑁 ‘ { 𝑇 } ) ) ) |
38 |
31 37
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝑋 ∨ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑋 ⊕ ( 𝑁 ‘ { 𝑇 } ) ) ) |